94-09-7Relevant articles and documents
Metal-free organic dyes containing thiadiazole unit for dye-sensitized solar cells: A combined experimental and theoretical study
Siva Kumar, Gangala,Srinivas, Kola,Shanigaram, Balaiah,Bharath, Dyaga,Singh, Surya Prakash,Bhanuprakash,Rao, V. Jayathirtha,Islam, Ashraful,Han, Liyuan
, p. 13172 - 13181 (2014)
We have designed and synthesized four new metal free D-A-π-A type dyes (9-12) with variations in their acceptor/anchor groups. The four dyes carry tert-butyl substituted triphenylamine as donor, thiadiazole as acceptor and bithiophene as π-spacer. Cyanoacetic acid, rhodanine-3-acetic acid, 2-(4-methoxyphenyl)acetic acid and 2-phenylacetic acid are used as acceptor/anchor groups, respectively in the dyes 9-12. The acceptor/anchor effect on their photophysical, electrochemical and photovoltaic properties was investigated. The dyes exhibited good power conversion efficiency ranging from 1.95-4.12%. Among the four dyes, 9 showed the best photovoltaic performance: short-circuit current density (Jsc) of 8.50 mA cm-2, open-circuit voltage (Voc) of 645 mV and fill factor (FF) of 0.75, corresponding to an overall conversion efficiency of 4.12% under standard global AM 1.5 solar light conditions. This journal is the Partner Organisations 2014.
Hydrogenation of ethyl p-nitrobenzoate on carbon-supported palladium-triphenylphosphine catalyst
Obraztsova,Efimov
, p. 511 - 512 (2004)
Hydrogenation of ethyl p-nitrobenzoate on carbon-supported palladium-triphenylphosphine catalyst at 40°C and atmospheric pressure of H2 was studied.
Kinetics of the reduction of p-nitrobenzoic acid esters in nanoreactors on the basis of sulfonated polymers
Al'Tshuler,Shkurenko,Gorlov
, p. 372 - 375 (2015)
The kinetics of the reduction of p-nitrobenzoic acid esters in nanoreactors based on sulfonated network polymers containing nanodispersed palladium was studied. The kinetic characteristics of the hydrogenation of aromatic nitro compounds were calculated.
Nickel Boride Catalyzed Reductions of Nitro Compounds and Azides: Nanocellulose-Supported Catalysts in Tandem Reactions
Proietti, Giampiero,Prathap, Kaniraj Jeya,Ye, Xinchen,Olsson, Richard T.,Dinér, Peter
, p. 133 - 146 (2021/11/04)
Nickel boride catalyst prepared in situ from NiCl2 and sodium borohydride allowed, in the presence of an aqueous solution of TEMPO-oxidized nanocellulose (0.01 wt%), the reduction of a wide range of nitroarenes and aliphatic nitro compounds. Here we describe how the modified nanocellulose has a stabilizing effect on the catalyst that enables low loading of the nickel salt pre-catalyst. Ni-B prepared in situ from a methanolic solution was also used to develop a greener and facile reduction of organic azides, offering a substantially lowered catalyst loading with respect to reported methods in the literature. Both aromatic and aliphatic azides were reduced, and the protocol is compatible with a one-pot Boc-protection of the obtained amine yielding the corresponding carbamates. Finally, bacterial crystalline nanocellulose was chosen as a support for the Ni-B catalyst to allow an easy recovery step of the catalyst and its recyclability for new reduction cycles.
Photoinduced Iron-Catalyzed ipso-Nitration of Aryl Halides via Single-Electron Transfer
Wu, Cunluo,Bian, Qilong,Ding, Tao,Tang, Mingming,Zhang, Wenkai,Xu, Yuanqing,Liu, Baoying,Xu, Hao,Li, Hai-Bei,Fu, Hua
, p. 9561 - 9568 (2021/08/06)
A photoinduced iron-catalyzed ipso-nitration of aryl halides with KNO2 has been developed, in which aryl iodides, bromides, and some of aryl chlorides are feasible. The mechanism investigations show that the in situ formed iron complex by FeSO4, KNO2, and 1,10-phenanthroline acts as the light-harvesting photocatalyst with a longer lifetime of the excited state, and the reaction undergoes a photoinduced single-electron transfer (SET) process. This work represents an example for the photoinduced iron-catalyzed Ullmann-type couplings.
Cyclic (Alkyl)(amino)carbene Ligand-Promoted Nitro Deoxygenative Hydroboration with Chromium Catalysis: Scope, Mechanism, and Applications
Zhao, Lixing,Hu, Chenyang,Cong, Xuefeng,Deng, Gongda,Liu, Liu Leo,Luo, Meiming,Zeng, Xiaoming
, p. 1618 - 1629 (2021/01/25)
Transition metal catalysis that utilizes N-heterocyclic carbenes as noninnocent ligands in promoting transformations has not been well studied. We report here a cyclic (alkyl)(amino)carbene (CAAC) ligand-promoted nitro deoxygenative hydroboration with cost-effective chromium catalysis. Using 1 mol % of CAAC-Cr precatalyst, the addition of HBpin to nitro scaffolds leads to deoxygenation, allowing for the retention of various reducible functionalities and the compatibility of sensitive groups toward hydroboration, thereby providing a mild, chemoselective, and facile strategy to form anilines, as well as heteroaryl and aliphatic amine derivatives, with broad scope and particularly high turnover numbers (up to 1.8 × 106). Mechanistic studies, based on theoretical calculations, indicate that the CAAC ligand plays an important role in promoting polarity reversal of hydride of HBpin; it serves as an H-shuttle to facilitate deoxygenative hydroboration. The preparation of several commercially available pharmaceuticals by means of this strategy highlights its potential application in medicinal chemistry.
Iridium-Triggered Allylcarbamate Uncaging in Living Cells
Gupta, Ajay,Gupta, Shalini,Mahawar, Pritam,Prasad, Puja,Sasmal, Pijus K.,Singh, Neelu
supporting information, p. 12644 - 12650 (2021/09/06)
Designing a metal catalyst that addresses the major issues of solubility, stability, toxicity, cell uptake, and reactivity within complex biological milieu for bioorthogonal controlled transformation reactions is a highly formidable challenge. Herein, we report an organoiridium complex that is nontoxic and capable of the uncaging of allyloxycarbonyl-protected amines under biologically relevant conditions and within living cells. The potential applications of this uncaging chemistry have been demonstrated by the generation of diagnostic and therapeutic agents upon the activation of profluorophore and prodrug in a controlled fashion within HeLa cells, providing a valuable tool for numerous potential biological and therapeutic applications.
Pleuromutilin derivative with 1, 3, 4-oxadiazole side chain and preparation and application thereof
-
Paragraph 0055-0056; 0070; 0090; 0092; 0095; 0103, (2021/07/24)
The invention belongs to the field of medicinal chemistry, and particularly relates to a pleuromutilin derivative with a 1, 3, 4-oxadiazole side chain and preparation and application thereof The pleuromutilin derivative with the 1, 3, 4-oxadiazole side chain is a compound shown in a formula 2 or a pharmaceutically acceptable salt thereof, and a solvent compound, an enantiomer, a diastereoisomer and a tautomer of the compound shown in the formula 2 or the pharmaceutically acceptable salt thereof or a mixture of the solvent compound, the enantiomer, the diastereoisomer and the tautomer in any proportion, including a racemic mixture. The pleuromutilin derivative has good antibacterial activity, is especially suitable for being used as a novel antibacterial agent for systemic system infection of animals or human beings, and has good water solubility.
Optimizing the structure of (salicylideneamino)benzoic acids: Towards selective antifungal and anti-staphylococcal agents
Krátky, Martin,Kone?ná, Klára,Broke?ová, Kate?ina,Maixnerová, Jana,Trejtnar, Franti?ek,Vin?ová, Jarmila
, (2021/02/03)
An increasing resistance of human pathogenic bacteria and fungi has become a global health problem. Based on previous reports of 4-(salicylideneamino)benzoic acids, we designed, synthesised and evaluated their me-too analogues as potential antimicrobial agents. Forty imines derived from substituted salicylaldehydes and aminobenzoic acids, 4-aminobenzoic acid esters and 4-amino-N-phenylbenzamide were designed using molecular hybridization and prodrug strategies. The target compounds were synthesized with high yields and characterized by spectral methods. They were investigated against a panel of Gram-positive and Gram-negative bacteria, mycobacteria, yeasts and moulds. The most active imines were tested to determine their cytotoxicity and selectivity in HepG2 cells. Dihalogenosalicylaldehydes-based derivatives showed potent broad-spectrum antimicrobial properties, particularly against Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (minimum inhibitory concentrations, MIC, from 7.81 μM) and Enterococcus faecalis (MIC of ≥15.62 μM), yeasts (MIC from 7.81 μM) and Trichophyton interdigitale mould (MIC of ≥3.90 μM). Methyl 4-[(2-hydroxy-3,5-diiodobenzylidene)amino]benzoate 4h exhibited excellent in vitro activity along with low toxicity to mammalian cells. This compound is selective for staphylococci, Candida spp. and Trichophyton interdigitale. In addition, this imine was evaluated as a potential inhibitor of Gram-positive biofilms. The successful approach used provided some promising derivatives with more advantageous properties than the parent 4-(salicylideneamino)benzoic acids.
Design, synthesis, in vitro and in vivo evaluation against MRSA and molecular docking studies of novel pleuromutilin derivatives bearing 1, 3, 4-oxadiazole linker
Liu, Jie,Zhang, Guang-Yu,Zhang, Zhe,Li, Bo,Chai, Fei,Wang, Qi,Zhou, Zi-Dan,Xu, Ling-Ling,Wang, Shou-Kai,Jin, Zhen,Tang, You-Zhi
, (2021/05/17)
A class of pleuromutilin derivatives containing 1, 3, 4-oxadiazole were designed and synthesized as potential antibacterial agents against Methicillin-resistant staphylococcus aureus (MRSA). The ultrasound-assisted reaction was proposed as a green chemistry method to synthesize 1, 3, 4-oxadiazole derivatives (intermediates 85–110). Among these pleuromutilin derivatives, compound 133 was found to be the strongest antibacterial derivative against MRSA (MIC = 0.125 μg/mL). Furthermore, the result of the time-kill curves displayed that compound 133 could inhibit the growth of MRSA in vitro quickly (- 4.36 log10 CFU/mL reduction). Then, compound 133 (- 1.82 log10 CFU/mL) displayed superior in vivo antibacterial efficacy than tiamulin (- 0.82 log10 CFU/mL) in reducing MRSA load in mice thigh model. Besides, compound 133 exhibited low cytotoxicity to RAW 264.7 cells. Molecular docking studies revealed that compound 133 was successfully localized in the binding pocket of 50S ribosomal subunit (ΔGb = -10.50 kcal/mol). The results indicated that these pleuromutilin derivatives containing 1, 3, 4-oxadiazole might be further developed into novel antibiotics against MRSA.