Welcome to LookChem.com Sign In|Join Free

Cas Database

119-42-6

119-42-6

Identification

  • Product Name:Phenol, 2-cyclohexyl-

  • CAS Number: 119-42-6

  • EINECS:204-322-4

  • Molecular Weight:176.258

  • Molecular Formula: C12H16 O

  • HS Code:29071990

  • Mol File:119-42-6.mol

Synonyms:Phenol,o-cyclohexyl- (8CI); 2-Cyclohexylphenol; NSC 6093; o-Cyclohexylphenol

Post Buying Request Now
Entrust LookChem procurement to find high-quality suppliers faster

Safety information and MSDS view more

  • Signal Word:Danger

  • Hazard Statement:H314 Causes severe skin burns and eye damageH411 Toxic to aquatic life with long lasting effects

  • First-aid measures: General adviceConsult a physician. Show this safety data sheet to the doctor in attendance.If inhaled If breathed in, move person into fresh air. If not breathing, give artificial respiration. Consult a physician. In case of skin contact Wash off with soap and plenty of water. Consult a physician. In case of eye contact Rinse thoroughly with plenty of water for at least 15 minutes and consult a physician. If swallowed Never give anything by mouth to an unconscious person. Rinse mouth with water. Consult a physician.

  • Fire-fighting measures: Suitable extinguishing media Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide. Wear self-contained breathing apparatus for firefighting if necessary.

  • Accidental release measures: Use personal protective equipment. Avoid dust formation. Avoid breathing vapours, mist or gas. Ensure adequate ventilation. Evacuate personnel to safe areas. Avoid breathing dust. For personal protection see section 8. Prevent further leakage or spillage if safe to do so. Do not let product enter drains. Discharge into the environment must be avoided. Pick up and arrange disposal. Sweep up and shovel. Keep in suitable, closed containers for disposal.

  • Handling and storage: Avoid contact with skin and eyes. Avoid formation of dust and aerosols. Avoid exposure - obtain special instructions before use.Provide appropriate exhaust ventilation at places where dust is formed. For precautions see section 2.2. Store in cool place. Keep container tightly closed in a dry and well-ventilated place.

  • Exposure controls/personal protection:Occupational Exposure limit valuesBiological limit values Handle in accordance with good industrial hygiene and safety practice. Wash hands before breaks and at the end of workday. Eye/face protection Safety glasses with side-shields conforming to EN166. Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU). Skin protection Wear impervious clothing. The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace. Handle with gloves. Gloves must be inspected prior to use. Use proper glove removal technique(without touching glove's outer surface) to avoid skin contact with this product. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Wash and dry hands. The selected protective gloves have to satisfy the specifications of EU Directive 89/686/EEC and the standard EN 374 derived from it. Respiratory protection Wear dust mask when handling large quantities. Thermal hazards

Supplier and reference price

  • Manufacture/Brand
  • Product Description
  • Packaging
  • Price
  • Delivery
  • Purchase
  • Manufacture/Brand:TRC
  • Product Description:2-?Cyclohexylphenol
  • Packaging:5g
  • Price:$ 275
  • Delivery:In stock
  • Buy Now
  • Manufacture/Brand:TCI Chemical
  • Product Description:2-Cyclohexylphenol >97.0%(GC)
  • Packaging:25g
  • Price:$ 81
  • Delivery:In stock
  • Buy Now
  • Manufacture/Brand:TCI Chemical
  • Product Description:2-Cyclohexylphenol >97.0%(GC)
  • Packaging:5g
  • Price:$ 27
  • Delivery:In stock
  • Buy Now
  • Manufacture/Brand:Sigma-Aldrich
  • Product Description:2-CYCLOHEXYLPHENOL AldrichCPR
  • Packaging:250mg
  • Price:$ 144
  • Delivery:In stock
  • Buy Now
  • Manufacture/Brand:Crysdot
  • Product Description:2-Cyclohexylphenol 95+%
  • Packaging:100g
  • Price:$ 666
  • Delivery:In stock
  • Buy Now
  • Manufacture/Brand:Apolloscientific
  • Product Description:2-Cyclohexylphenol
  • Packaging:25g
  • Price:$ 736
  • Delivery:In stock
  • Buy Now
  • Manufacture/Brand:Apolloscientific
  • Product Description:2-Cyclohexylphenol
  • Packaging:1g
  • Price:$ 115
  • Delivery:In stock
  • Buy Now
  • Manufacture/Brand:Apolloscientific
  • Product Description:2-Cyclohexylphenol
  • Packaging:5g
  • Price:$ 237
  • Delivery:In stock
  • Buy Now
  • Manufacture/Brand:American Custom Chemicals Corporation
  • Product Description:2-CYCLOHEXYLPHENOL 95.00%
  • Packaging:5MG
  • Price:$ 498.14
  • Delivery:In stock
  • Buy Now
  • Manufacture/Brand:Alichem
  • Product Description:2-Cyclohexylphenol
  • Packaging:100g
  • Price:$ 679.73
  • Delivery:In stock
  • Buy Now

Relevant articles and documentsAll total 45 Articles be found

Influence of nanoscale distribution of Pd particles in the mesopores of MCM-41 on the catalytic performance of Pd/MCM-41

Dong, Chao,Li, Xiang,Wang, Anjie,Chen, Yongying,Liu, Haiou

, p. 219 - 222 (2017)

Two different nanoscale Pd particle distributions in MCM-41, i.e. in the mesopores and on the external surface, were obtained by using a siliceous MCM-41 and a silylated MCM-41 (S-MCM-41) as the starting support materials, respectively. The electron density of Pd in Pd/S-MCM-41 was lower than that in Pd/MCM-41. Pd/S-MCM-41 exhibited much better selective hydrogenation performance but a lower hydrogenolysis activity than Pd/MCM-41. These differences are related to the different Pd particle distributions in MCM-41 and S-MCM-41, demonstrating that the performance of noble metal catalysts is tunable by simply controlling the nanoscale metal particle distribution in the pores.

Nickel and cobalt phosphides as effective catalysts for oxygen removal of dibenzofuran: Role of contact time, hydrogen pressure and hydrogen/feed molar ratio

Infantes-Molina,Gralberg,Cecilia,Finocchio, Elisabetta,Rodríguez-Castellón

, p. 3403 - 3415 (2015)

The catalytic activity of nickel and cobalt phosphides, with a metal loading of 5 wt.%, supported on silica was investigated in the hydrodeoxygenation reaction (HDO) of dibenzofuran (DBF) as a model oxygenated compound at different contact times, H2 pressures and H2/DBF molar ratios. The aim of the study was to understand the mechanism of the reaction and to study the impact of H2 pressure and H2/DBF molar ratio on the reaction. The catalysts were characterized by N2 adsorption-desorption isotherm measurement at -196°C, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), CO chemisorption, NH3 Temperature-Programmed Desorption (NH3-TPD), IR spectroscopy and H2 Temperature-Programmed Desorption (H2-TPD). The prepared catalysts were tested in the HDO reaction of DBF in a continuous-flow fixed-bed stainless steel catalytic reactor at pressures ranging from 1-30 bar at 275°C. The results obtained indicate that the Ni2P catalyst is more active than the CoP catalyst, converting more than 90% of DBF at the highest contact time into oxygen-free products. The activity of both catalysts increases with increased contact time. At low contact times, the intermediates tetrahydrodibenzofuran (THDBF) and hexahydrodibenzofuran (HHDBF) are observed as products, while an increment in the contact time led to the transformation of THDBF and HHDBF into O-free compounds, mainly bicyclohexane (BCH), indicating that the HDO of DBF follows the path: DBF → HHDBF → THDBF → 2-CHP → BCH. Further, both Ni2P and CoP catalysts are active at medium pressures with HDO degrees similar to those obtained at 30 bar. Ni2P is less affected by the changes in H2/DBF ratio than CoP and the catalysts are more active at high H2/DBF molar ratios.

Effective hydrodeoxygenation of dibenzofuran by a bimetallic catalyst in water

Dong, Peng,Lu, Guo-Ping,Cai, Chun

, p. 1605 - 1609 (2016)

Effective hydrodeoxygenation (HDO) of dibenzofuran (DBF) catalyzed by a bimetallic nickel/platinum (Ni/Pt) catalyst in water was demonstrated at 200 °C and 1.2 MPa hydrogen (H2) pressure. The bimetallic catalysts prepared by a wet chemical method exhibit prominent activity that overcomes the limitations of use of a single Ni or Pt metal catalyst. The yield of HDO products can be up to 90%. Reaction results indicate that the conversion of DBF was affected by the reaction temperature and H2 pressure. The deoxygenation selectivity was strongly dependent on reaction temperature. The reaction pathway is also proposed.

Promising Ni/Al-SBA-15 catalysts for hydrodeoxygenation of dibenzofuran into fuel grade hydrocarbons: Synergetic effect of Ni and Al-SBA-15 support

Gbadamasi, Sharafadeen,Ali, Tammar Hussein,Voon, Lee Hwei,Atta, Abdulazeez Yusuf,Sudarsanam, Putla,Bhargava, Suresh K.,Abd Hamid, Sharifah Bee

, p. 25992 - 26002 (2016)

This work has been undertaken with the aim of designing promising noble-metal-free catalysts for efficient hydrodeoxygenation (HDO) of dibenzofuran (DBF) into fuel grade hydrocarbons. For this, various Ni/Al-SBA-15 catalysts with different Si/Al (50, 60, 70 and 80) mole ratios were synthesized and their catalytic performance was tested for HDO of DBF in a batch reactor. The catalysts were systematically characterized using XRD, N2-adsorption-desorption, Raman, H2-TPR, NH3-TPD, XRF, and FESEM techniques. The activity results showed that the HDO of DBF proceeds via hydrogenation of benzene on the Ni sites followed by cleavage of C-O bonds on the acidic sites of the catalyst to yield unsaturated hydrocarbons. Further hydrogenation of unsaturated hydrocarbons on the Ni sites gives bicyclohexane as the major product. Remarkably, a 100% DBF conversion was found for all the catalysts except for Ni/SBA-15 and Ni/Al-SBA-15(80) (Si/Al mole ratio = 80) catalysts, which showed 97.97 and 99.31%, respectively. A significant observation noticed in this study is that the incorporation of Al into Ni/SBA-15 results in an outstanding improvement in the selectivity of the bicyclohexane product. Among the catalysts tested, the Ni/Al-SBA-15(50) (Si/Al mole ratio = 50) catalyst showed the highest efficiency, with superior selectivity of ~87% for bicyclohexane and ~96% degree of deoxygenation at 10 MPa, 260 °C and 5 h. The obtained structure-activity results reveal the synergetic effect of Ni and support in HDO of DBF reaction: the concentration of acidic sites has a significant effect on the selectivity of the desired products.

Cu/Mg/Al/Zr non-noble metal catalysts for o-phenylphenol synthesis

Zeng, Yongping,Zhang, Tianchi,Xu, Yueyang,Hu, Peili,Ye, Ting,Jia, Zhehua,Ju, Shengui

, p. 6737 - 6746 (2016)

Cu/Mg/Al/Zr hydrotalcite-like precursors with Zr4+:(Al3+ + Zr4+) atomic ratios between 0 and 1 were prepared by co-precipitation methods. The precursors were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric (TG) analysis and Fourier transform infrared spectroscopy (FT-IR). The results confirmed that well-defined layered double hydroxides (LDH) can be synthesized when the added Zr content is less than 0.25 in terms of Zr4+/(Al3+ + Zr4+) atomic ratio. The catalysts of Cu/Zn/Al/Zr mixed oxides can be obtained via thermal decomposition of hydroxide precursors, and can be used in dehydrogenation of 2-(1-cyclohexenyl) cyclohexanone (CHCH) to ortho-phenylphenol (OPP). Copper particles inside the catalyst act as active sites for dehydrogenation. Transmission electron microscopy (TEM), XRD, N2O chemisorption and N2 adsorption-desorption were performed to investigate the effect of Zr content on determining the copper particle size. Based on the catalytic performance test, it was concluded that the conversion of CHCH depends on the copper particle size of these catalysts.

Kablaoui

, p. 2126 (1974)

ALKYLATION OF PHENOL WITH CYCLOHEXENE.

Seino,Okazaki,Saito

, p. 32 - 38,32,33,34,37 (1976)

The alkylation of phenol with cyclohexene in the vapor phase has been studied over the cation-exchanged X zeolite catalysts. Because of the dealkylation of products, the catalytic activity decreased with rising reaction temperature. The yield of cyclohexy

Supported Pt-Ni bimetallic nanoparticles catalyzed hydrodeoxygenation of dibenzofuran with high selectivity to bicyclohexane

Cai, Chun,Wu, Pengyu

supporting information, (2021/07/10)

Catalytic hydrodeoxygenation (HDO) is one of the most effective methods to upgrade the oxygen-containing compounds derived from coal tar to valuable hydrocarbons. Herein, an efficient bimetallic catalyst Pt1Ni4/MgO was prepared and applied in the HDO of dibenzofuran (DBF). High yield (95%) of the desired product bicyclohexane (BCH) was achieved at 240 °C and 1.2 MPa of H2. Superior catalytic performance could be ascribed to the “relay catalysis” of Pt sites and Ni sites, and the reaction pathway is proposed as well. Scale-up experiment and recyclability test were also performed, which demonstrated the recyclability and promising potential application of Pt1Ni4/MgO.

Nanocrystalline hierarchical ZSM-5: An efficient catalyst for the alkylation of phenol with cyclohexene

Radhika,Selvin, Rosilda,Kakkar, Rita,Roselin, L. Selva

, p. 5404 - 5413 (2018/02/28)

In this paper, authors report the synthesis of nanocrystalline hierarchical zeolite ZSM-5 and its application as a heterogeneous catalyst in the alkylation of phenol with cyclohexene. The catalyst was synthesized by vacuum-concentration coupled hydrothermal technique in the presence of two templates. This synthetic route could successfully introduce pores of higher hierarchy in the zeolite ZSM-5 structure. Hierarchical ZSM-5 could catalyse effectively the industrially important reaction of cyclohexene with phenol. We ascribe the high efficiency of the catalyst to its conducive structural features such as nanoscale size, high surface area, presence of hierarchy of pores and existence of Lewis sites along with Br?nsted acid sites. The effect of various reaction parameters like duration, catalyst amount, reactant mole ratio and temperature were assessed. Under optimum reaction conditions, the catalyst showed up to 65% selectivity towards the major product, cyclohexyl phenyl ether. There was no discernible decline in percent conversion or selectivity even when the catalyst was re-used for up to four runs. Kinetic studies were done through regression analysis and a mechanistic route based on LHHW model was suggested.

Enantiospecific sp2–sp3 Coupling of ortho- and para-Phenols with Secondary and Tertiary Boronic Esters

Wilson, Claire M.,Ganesh, Venkataraman,Noble, Adam,Aggarwal, Varinder K.

supporting information, p. 16318 - 16322 (2017/12/04)

The coupling of ortho- and para-phenols with secondary and tertiary boronic esters has been explored. In the case of para-substituted phenols, after reaction of a dilithio phenolate species with a boronic ester, treatment with Ph3BiF2 or Martin's sulfurane gave the coupled product with complete enantiospecificity. The methodology was applied to the synthesis of the broad spectrum antibacterial natural product (?)-4-(1,5-dimethylhex-4-enyl)-2-methyl phenol. For ortho-substituted phenols, initial incorporation of a benzotriazole on the phenol oxygen atom was required. Subsequent ortho-lithiation and borylation gave the coupled product, again with complete stereospecificity.

Process route upstream and downstream products

Process route

dibenzofuran
132-64-9,214827-48-2

dibenzofuran

cyclohexenone
930-68-7

cyclohexenone

2-Methylcyclopentanone
1120-72-5

2-Methylcyclopentanone

diphenylether
101-84-8

diphenylether

tert-butylbenzene
253185-03-4,253185-04-5

tert-butylbenzene

propane
74-98-6

propane

hexane
110-54-3

hexane

n-hexan-2-one
591-78-6

n-hexan-2-one

2-methyl-2-cyclopenten-1-one
1120-73-6

2-methyl-2-cyclopenten-1-one

n-pentylcyclohexane
4292-92-6

n-pentylcyclohexane

ethylbenzene
100-41-4,27536-89-6

ethylbenzene

1-butylbenzene
104-51-8

1-butylbenzene

pentylbenzene
538-68-1

pentylbenzene

cyclopentylbenzene
700-88-9

cyclopentylbenzene

4-Phenylphenol
92-69-3

4-Phenylphenol

dicyclohexyl ether
4645-15-2

dicyclohexyl ether

2-phenylpentane
2719-52-0

2-phenylpentane

1-pentenylbenzene
826-18-6

1-pentenylbenzene

2-butylcyclohexanone
1126-18-7

2-butylcyclohexanone

cyclohexylphenyl ether
2206-38-4

cyclohexylphenyl ether

2-cyclohexylphenol
119-42-6

2-cyclohexylphenol

3-methyl-phenol
108-39-4

3-methyl-phenol

ortho-cresol
95-48-7,77504-84-8

ortho-cresol

2-Phenylphenol
90-43-7,287950-96-3

2-Phenylphenol

cyclohexene
110-83-8

cyclohexene

cyclohexanol
108-93-0

cyclohexanol

Conditions
Conditions Yield
With hydrogen; 1 wtpercent K/1 wtpercent Pt/SiO2; at 425 ℃; under 5931.67 Torr;
dibenzofuran
132-64-9,214827-48-2

dibenzofuran

cyclohexenone
930-68-7

cyclohexenone

2-Methylcyclopentanone
1120-72-5

2-Methylcyclopentanone

diphenylether
101-84-8

diphenylether

tert-butylbenzene
253185-03-4,253185-04-5

tert-butylbenzene

propane
74-98-6

propane

hexane
110-54-3

hexane

ethylbenzene
100-41-4,27536-89-6

ethylbenzene

pentylbenzene
538-68-1

pentylbenzene

cyclopentylbenzene
700-88-9

cyclopentylbenzene

4-Phenylphenol
92-69-3

4-Phenylphenol

dicyclohexyl ether
4645-15-2

dicyclohexyl ether

cyclohexylphenyl ether
2206-38-4

cyclohexylphenyl ether

2-cyclohexylphenol
119-42-6

2-cyclohexylphenol

ortho-cresol
95-48-7,77504-84-8

ortho-cresol

2-Phenylphenol
90-43-7,287950-96-3

2-Phenylphenol

cyclohexene
110-83-8

cyclohexene

cyclohexanol
108-93-0

cyclohexanol

Conditions
Conditions Yield
With hydrogen; 1 wtpercent K/1 wtpercent Pt/SiO2; at 425 ℃; under 5931.67 Torr;
dibenzofuran
132-64-9,214827-48-2

dibenzofuran

cyclohexenone
930-68-7

cyclohexenone

diphenylether
101-84-8

diphenylether

tert-butylbenzene
253185-03-4,253185-04-5

tert-butylbenzene

n-pentylcyclohexane
4292-92-6

n-pentylcyclohexane

pentylbenzene
538-68-1

pentylbenzene

dicyclohexyl ether
4645-15-2

dicyclohexyl ether

2-butylcyclohexanone
1126-18-7

2-butylcyclohexanone

cyclohexylphenyl ether
2206-38-4

cyclohexylphenyl ether

2-cyclohexylphenol
119-42-6

2-cyclohexylphenol

2-Phenylphenol
90-43-7,287950-96-3

2-Phenylphenol

cyclohexene
110-83-8

cyclohexene

cyclohexanol
108-93-0

cyclohexanol

Conditions
Conditions Yield
With hydrogen; 1 wtpercent K/1 wtpercent Pt/SiO2; at 425 ℃; under 3345.86 Torr;
dibenzofuran
132-64-9,214827-48-2

dibenzofuran

cyclohexenone
930-68-7

cyclohexenone

2-Methylcyclopentanone
1120-72-5

2-Methylcyclopentanone

diphenylether
101-84-8

diphenylether

n-pentylcyclohexane
4292-92-6

n-pentylcyclohexane

pentylbenzene
538-68-1

pentylbenzene

4-Phenylphenol
92-69-3

4-Phenylphenol

dicyclohexyl ether
4645-15-2

dicyclohexyl ether

1-pentenylbenzene
826-18-6

1-pentenylbenzene

2-butylcyclohexanone
1126-18-7

2-butylcyclohexanone

cyclohexylphenyl ether
2206-38-4

cyclohexylphenyl ether

2-cyclohexylphenol
119-42-6

2-cyclohexylphenol

ortho-cresol
95-48-7,77504-84-8

ortho-cresol

2-Phenylphenol
90-43-7,287950-96-3

2-Phenylphenol

cyclohexene
110-83-8

cyclohexene

cyclohexanol
108-93-0

cyclohexanol

Conditions
Conditions Yield
With hydrogen; 1 wtpercent K/1 wtpercent Pt/SiO2; at 375 ℃; under 5931.67 Torr;
dibenzofuran
132-64-9,214827-48-2

dibenzofuran

cyclohexenone
930-68-7

cyclohexenone

2-Methylcyclopentanone
1120-72-5

2-Methylcyclopentanone

diphenylether
101-84-8

diphenylether

tert-butylbenzene
253185-03-4,253185-04-5

tert-butylbenzene

propane
74-98-6

propane

n-hexan-2-one
591-78-6

n-hexan-2-one

2-methyl-2-cyclopenten-1-one
1120-73-6

2-methyl-2-cyclopenten-1-one

1-butylbenzene
104-51-8

1-butylbenzene

pentylbenzene
538-68-1

pentylbenzene

cyclopentylbenzene
700-88-9

cyclopentylbenzene

4-Phenylphenol
92-69-3

4-Phenylphenol

dicyclohexyl ether
4645-15-2

dicyclohexyl ether

cyclohexylphenyl ether
2206-38-4

cyclohexylphenyl ether

2-cyclohexylphenol
119-42-6

2-cyclohexylphenol

ortho-cresol
95-48-7,77504-84-8

ortho-cresol

2-Phenylphenol
90-43-7,287950-96-3

2-Phenylphenol

cyclohexene
110-83-8

cyclohexene

cyclohexanol
108-93-0

cyclohexanol

Conditions
Conditions Yield
With hydrogen; 1 wtpercent K/1 wtpercent Pt/SiO2; at 425 ℃; under 5931.67 Torr;
dibenzofuran
132-64-9,214827-48-2

dibenzofuran

cyclohexenone
930-68-7

cyclohexenone

2-Methylcyclopentanone
1120-72-5

2-Methylcyclopentanone

diphenylether
101-84-8

diphenylether

tert-butylbenzene
253185-03-4,253185-04-5

tert-butylbenzene

n-hexan-2-one
591-78-6

n-hexan-2-one

pentylbenzene
538-68-1

pentylbenzene

cyclopentylbenzene
700-88-9

cyclopentylbenzene

4-Phenylphenol
92-69-3

4-Phenylphenol

cyclohexylphenyl ether
2206-38-4

cyclohexylphenyl ether

2-cyclohexylphenol
119-42-6

2-cyclohexylphenol

ortho-cresol
95-48-7,77504-84-8

ortho-cresol

2-Phenylphenol
90-43-7,287950-96-3

2-Phenylphenol

cyclohexene
110-83-8

cyclohexene

cyclohexanol
108-93-0

cyclohexanol

Conditions
Conditions Yield
With hydrogen; 1 wtpercent K/1 wtpercent Pt/SiO2; at 425 ℃; under 5931.67 Torr;
dibenzofuran
132-64-9,214827-48-2

dibenzofuran

cyclohexenone
930-68-7

cyclohexenone

diphenylether
101-84-8

diphenylether

tert-butylbenzene
253185-03-4,253185-04-5

tert-butylbenzene

n-pentylcyclohexane
4292-92-6

n-pentylcyclohexane

cyclopentylbenzene
700-88-9

cyclopentylbenzene

4-Phenylphenol
92-69-3

4-Phenylphenol

dicyclohexyl ether
4645-15-2

dicyclohexyl ether

cyclohexylphenyl ether
2206-38-4

cyclohexylphenyl ether

2-cyclohexylphenol
119-42-6

2-cyclohexylphenol

2-Phenylphenol
90-43-7,287950-96-3

2-Phenylphenol

cyclohexene
110-83-8

cyclohexene

cyclohexanol
108-93-0

cyclohexanol

Conditions
Conditions Yield
With hydrogen; 1 wtpercent K/1 wtpercent Pt/SiO2; at 425 ℃; under 3345.86 Torr;
aluminium trichloride
7446-70-0

aluminium trichloride

cyclohexene
110-83-8

cyclohexene

cyclohexyl chloride
542-18-7

cyclohexyl chloride

cyclohexylphenyl ether
2206-38-4

cyclohexylphenyl ether

2-cyclohexylphenol
119-42-6

2-cyclohexylphenol

p-cyclohexylphenol
1131-60-8

p-cyclohexylphenol

Conditions
Conditions Yield
hydrogenchloride
7647-01-0,15364-23-5

hydrogenchloride

cyclohexene
110-83-8

cyclohexene

cyclohexyl acetate
622-45-7

cyclohexyl acetate

2-cyclohexylphenol
119-42-6

2-cyclohexylphenol

p-cyclohexylphenol
1131-60-8

p-cyclohexylphenol

Conditions
Conditions Yield
dibenzofuran
132-64-9,214827-48-2

dibenzofuran

cyclohexenone
930-68-7

cyclohexenone

diphenylether
101-84-8

diphenylether

tert-butylbenzene
253185-03-4,253185-04-5

tert-butylbenzene

dicyclohexyl ether
4645-15-2

dicyclohexyl ether

2-butylcyclohexanone
1126-18-7

2-butylcyclohexanone

cyclohexylphenyl ether
2206-38-4

cyclohexylphenyl ether

2-cyclohexylphenol
119-42-6

2-cyclohexylphenol

2-Phenylphenol
90-43-7,287950-96-3

2-Phenylphenol

cyclohexene
110-83-8

cyclohexene

cyclohexanol
108-93-0

cyclohexanol

Conditions
Conditions Yield
With hydrogen; 1 wtpercent K/1 wtpercent Pt/SiO2; at 425 ℃; under 3345.86 Torr; Product distribution / selectivity;

Global suppliers and manufacturers

Global( 32) Suppliers
  • Company Name
  • Business Type
  • Contact Tel
  • Emails
  • Main Products
  • Country
  • Chemwill Asia Co., Ltd.
  • Business Type:Manufacturers
  • Contact Tel:021-51086038
  • Emails:sales@chemwill.com
  • Main Products:55
  • Country:China (Mainland)
  • Amadis Chemical Co., Ltd.
  • Business Type:Lab/Research institutions
  • Contact Tel:86-571-89925085
  • Emails:sales@amadischem.com
  • Main Products:29
  • Country:China (Mainland)
  • GIHI CHEMICALS CO.,LIMITED
  • Business Type:Lab/Research institutions
  • Contact Tel:+86-571-86217390
  • Emails:info@gihichem.com
  • Main Products:66
  • Country:China (Mainland)
  • Finetech Industry Limited
  • Business Type:Trading Company
  • Contact Tel:86-27-87465837
  • Emails:sales@finetechnology-ind.com
  • Main Products:29
  • Country:China (Mainland)
  • Antimex Chemical Limied
  • Business Type:Lab/Research institutions
  • Contact Tel:0086-21-50563169
  • Emails:anthony@antimex.com
  • Main Products:163
  • Country:China (Mainland)
close
Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 119-42-6
Post Buying Request Now
close
Remarks: The blank with*must be completed