351-50-8Relevant articles and documents
Preparation and characterization of a new open-tubular capillary column for enantioseparation by capillary electrochromatography
Li, Yingjie,Tang, Yimin,Qin, Shili,Li, Xue,Dai, Qiang,Gao, Lidi
, p. 283 - 292 (2019/02/05)
In order to use the enantioseparation capability of cationic cyclodextrin and to combine the advantages of capillary electrochromatography (CEC) with open-tubular (OT) column, in this study, a new OT-CEC, coated with cationic cyclodextrin (1-allylimidazolium-β-cyclodextrin [AI-β-CD]) as chiral stationary phase (CSP), was prepared and applied for enantioseparation. Synthesized AI-β-CD was characterized by infrared (IR) spectrometry and mass spectrometry (MS). The preparation conditions for the AI-β-CD-coated column were optimized with the orthogonal experiment design L9(34). The column prepared was characterized by scanning electron microscopy (SEM) and elemental analysis (EA). The results showed that the thickness of stationary phase in the inner surface of the AI-β-CD-coated columns was about 0.2 to 0.5?μm. The AI-β-CD content in stationary phase based on the EA was approximately 2.77?mmol·m?2. The AI-β-CD-coated columns could separate all 14 chiral compounds (histidine, lysine, arginine, glutamate, aspartic acid, cysteine, serine, valine, isoleucine, phenylalanine, salbutamol, atenolol, ibuprofen, and napropamide) successfully in the study and exhibit excellent reproducibility and stability. We propose that the column, coated with AI-β-CD, has a great potential for enantioseparation in OT-CEC.
Chromatographic Resolution of α-Amino Acids by (R)-(3,3'-Halogen Substituted-1,1'-binaphthyl)-20-crown-6 Stationary Phase in HPLC
Wu, Peng,Wu, Yuping,Zhang, Junhui,Lu, Zhenyu,Zhang, Mei,Chen, Xuexian,Yuan, Liming
supporting information, p. 1037 - 1042 (2017/07/25)
Three new chiral stationary phases (CSPs) for high-performance liquid chromatography were prepared from R-(3,3'-halogen substituted-1,1'-binaphthyl)-20-crown-6 (halogen = Cl, Br and I). The experimental results showed that R-(3,3'-dibromo-1,1'-binaphthyl)-20-crown-6 (CSP-1) possesses more prominent enantioselectivity than the two other halogen-substituted crown ether derivatives. All twenty-one α-amino acids have different degrees of separation on R-(3,3'-dibromo-1,1'-binaphthyl)-20-crown-6-based CSP-1 at room temperature. The enantioselectivity of CSP-1 is also better than those of some commercial R-(1,1'-binaphthyl)-20-crown-6 derivatives. Both the separation factors (α) and the resolution (Rs) are better than those of commercial crown ether-based CSPs [CROWNPAK CR(+) from Daicel] under the same conditions for asparagine, threonine, proline, arginine, serine, histidine and valine, which cannot be separated by commercial CR(+). This study proves the commercial usefulness of the R-(3,3'-dibromo-1,1'-binaphthyl)-20-crown-6 chiral stationary phase.
An easy 'Filter-and-Separate' method for enantioselective separation and chiral sensing of substrates using a biomimetic homochiral polymer
Senthilkumar,Asha
supporting information, p. 8931 - 8934 (2015/05/27)
We present a polyfluorene appended with protected l-glutamic acid that exhibited a reversible α-helix/β-sheet-like conformation and helical porous fibrous morphology mimicking the super-structure of proteins. The new homochiral polymer probe enabled efficient heterogeneous enantioselective separation and chiral sensing of a wide variety of substrates from their aqueous racemic mixture using an easy 'Filter-and-Separate' method.
SEPARATING AGENT AND MANUFACTURING METHOD THEREOF
-
Paragraph 0067; 0068; 0069; 0070; 0071; 0072; 0073; 0074, (2015/01/07)
An embodiment of the present invention is a separating agent wherein a group represented by a chemical formula of: or a group represented by a chemical formula of: is introduced on a surface thereof.
SEPARATING AGENT FOR CHROMATOGRAPHY
-
Paragraph 0074; 0075, (2013/08/15)
A separating agent for chromatography is provided that is useful for the separation of specific compounds, e.g., for the optical resolution of amino acids. This separating agent for chromatography provides a higher productivity and contains a crown ether-like cyclic structure and optically active binaphthyl. This separating agent for chromatography containing a crown ether-like cyclic structure and optically active binaphthyl is provided by introducing a substitution group for binding to carrier into a specific commercially available 1,1′-binaphthyl derivative that has substituents at the 2, 2′, 3, and 3′ positions, then introducing a crown ether-like cyclic structure, and subsequently chemically bonding the binaphthyl derivative to the carrier through the substitution group for binding to carrier.
Isolation and synthesis of falcitidin, a novel myxobacterial-derived acyltetrapeptide with activity against the malaria target falcipain-2
Somanadhan, Brinda,Kotturi, Santosh R.,Yan Leong, Chung,Glover, Robert P.,Huang, Yicun,Flotow, Horst,Buss, Antony D.,Lear, Martin J.,Butler, Mark S.
, p. 259 - 264 (2013/07/27)
A 384-well microtitre plate fluorescence cleavage assay was developed to identify inhibitors of the cysteine protease falcipain-2, an important antimalarial drug target. Bioassay-guided isolation of a MeOH extract from a myxobacterium Chitinophaga sp. Y23 isolated from soil collected in Singapore, led to the identification of a new acyltetrapeptide, falcitidin (1), which displayed an IC 50 value of 6 μM against falcipain-2. The planar structure of 1 was secured by NMR and MS/MS analysis. Attempts to isolate further material for biological testing were hampered by inconsistent production and by a low yield (100 μg l -1). The absolute configuration of 1 was determined by Marfey's analysis and the structure was confirmed through total synthesis as isovaleric acid-D-His-L-Ile-L-Val-L-Pro-NH 2. Falcitidin (1) is the first member of a new class of falcipain-2 inhibitors and, unlike other peptide-based inhibitors, does not contain reactive groups that irreversibly bind to active cysteine sites.
Aminolytic reaction catalyzed by d-stereospecific amidohydrolases from Streptomyces spp
Arima, Jiro,Ito, Hitomi,Hatanaka, Tadashi,Mori, Nobuhiro
experimental part, p. 1460 - 1469 (2012/01/12)
From investigation of 2000 soil isolates, we identified two serine-type amidohydrolases that can hydrolyze d-aminoacyl derivatives from the culture supernatant of Streptomyces species 82F2 and 83D12. The enzymes, redesignated as 82F2-DAP and 83D12-DAP, were purified for homogeneity and characterized. Each enzyme had molecular mass of approximately 40 kDa, and each showed moderate stability with respect to temperature and pH. Among hydrolytic activities toward d-aminoacyl-pNAs, the enzymes showed strict specificity toward d-Phe-pNA, but showed broad specificity toward d-aminoacyl esters. The specific activity for d-Phe-pNA hydrolysis of 82F2-DAP was ten-fold higher than that of 83D12-DAP. As a second function, each enzyme showed peptide bond formation activity by its function of aminolysis reaction. Based on results of d-Phe-d-Phe synthesis under various conditions, we propose a reaction mechanism for d-Phe-d-Phe production. Furthermore, the enzymes exhibited peptide elongation activity, producing oligo homopeptide in a one-pot reaction. We cloned the genes encoding each enzyme, which revealed that the primary structure of each enzyme showed 30-60% identity with those of peptidases belonging to the clan SE, S12 peptidase family categorized as serine peptidase with d-stereospecificity.
Amino acid ionic liquids as chiral ligands in ligand-exchange chiral separations
Liu, Qian,Wu, Kangkang,Tang, Fei,Yao, Lihua,Yang, Fei,Nie, Zhou,Yao, Shouzhuo
body text, p. 9889 - 9896 (2010/04/06)
Recently, amino acid ionic liquids (AAILs) have attracted much research interest. In this paper, we present the first application of AAILs in chiral separation based on the chiral ligand exchange principle. By using 1alkyl-3-methylimidazolium L-proline (L-Pro) as a chiral ligand coordinated with copper(II), four pairs of underivatized amino acid enantiomers - DLphenylalanine (DL-Phe), DL-histidine (DL-His), DL-tryptophane (DL-Trp), and DL-tyrosine (DL-Tyr) - were successfully separated in two major chiral separation techniques, HPLC and capillary electrophoresis (CE), with higher enantioselectivity than conventionally used amino acid ligands (resolution (Rs) = 3.26-10.81 for HPLC; Rs = 1.34-4.27 for CE). Interestingly, increasing the alkyl chain length of the AAIL cation remarkably enhanced the enantioselectivity. It was inferred that the alkylmethylimidazolium cations and L-Pro form ion pairs on the surface of the sta-tionary phase or on the inner surface of the capillary. The ternary copper complexes with L-Pro are consequently attached to the support surface, thus inducing an ion-exchange type of retention for the DL-enantiomers. Therefore, the AAIL cation plays an essential role in the separation. This work demonstrates that AAILs are good alternatives to conventional amino acid ligands for ligand-exchange-based chiral separation. It also reveals the tremendous application potential of this new type of task-specific ILs.
Chiral separation of underivatized amino acids by reactive extraction with palladium-BINAP complexes
Verkuijl, Bastiaan J. V.,Minnaard, Adriaan J.,De Vries, Johannes G.,Feringa, Ben L.
experimental part, p. 6526 - 6533 (2010/03/01)
(Figure Presented) In answer to the need for a more economic technology for the separation of racemates, a novel system for reactive enantioselective liquid-liquid extraction (ELLE) is introduced. Palladium (S)-BINAP complexes are employed as hosts in the separation of underivatized amino acids. The system shows the highest selectivity for the ELLE of tryptophan with metal complexes as hosts reported to date and shows a good selectivity toward a range of natural and unnatural amino acids. Furthermore, the host can be prepared in situ from commerically available compounds. Bulk-membrane transport in the form of U-tube experiments demonstrates the enantioselective and catalytic nature of the transport. The dependency of the system on parameters such as pH, organic solvent, and host-substrate ratio has been established. 31P NMR spectroscopy has been used to confirm the preferred enantiomer in the extraction experiments. The intrinsic selectivity was deduced by determination of the association constants of the palladium complex with the tryptophan enantiomers.