532-18-3Relevant articles and documents
Nitrogen-containing compound, organic electroluminescent device, and electronic device
-
Paragraph 0111-0115; 0118, (2021/01/24)
The invention provides a nitrogen-containing compound, an organic electroluminescent device and an electronic device, and belongs to the technical field of organic materials. The structure of the nitrogen-containing compound is represented by Chemical Formula 1: wherein X1, X2, Y1, Y2 are the same or different from each other and are each independently a single bond, O, S, N(R3), C(R4R5), Ge(R6R7), Si(R8R9), Se, wherein X1 and Y1 are not single bonds simultaneously and X2 and Y2 are not single bonds simultaneously.
Organic compound and electronic device and device containing the same
-
Paragraph 0216-0219; 0220-0222; 0228, (2021/09/11)
The invention relates to the technical field of organic electroluminescent materials, in particular to an organic electroluminescent material 9 with 10 -9 dihydro 9 -10 -dimethyl and oxanthrene and arylamine groups, an electronic device containing the compound and a device. The organic electroluminescent device has lower driving voltage. Higher luminous efficiency and longer service life.
COMPOUND FOR ORGANIC ELECTRONIC ELEMENT, ORGANIC ELECTRONIC ELEMENT USING THE SAME, AND A ELECTRONIC DEVICE THEREOF
-
Paragraph 0103; 0106-0109, (2021/06/22)
In the present invention, provided is a novel compound capable of improving luminance efficiency, stability, and service life of an element, an organic electronic element using the same, and an electronic device thereof. By using the compound of the present invention, high luminance efficiency, low driving voltages, and high heat resistance of the element can be achieved, and color purity and service life of the element can be greatly improved.
Combined KOH/BEt3Catalyst for Selective Deaminative Hydroboration of Aromatic Carboxamides for Construction of Luminophores
Li, Jinshan,Wang, Jiali,Yang, Jianguo,Yao, Wubing,Zhong, Aiguo
supporting information, p. 8086 - 8090 (2020/11/03)
The selective catalytic C-N bond cleavage of amides into value-added amine products is a desirable but challenging transformation. Molecules containing iminodibenzyl motifs are prevalent in pharmaceutical molecules and functional materials. Here we established a combined KOH/BEt3 catalyst for deaminative hydroboration of acyl-iminodibenzyl derivatives, including nonheterocyclic carboxamides, to the corresponding amines. This novel transition-metal-free methodology was also applied to the construction of Clomipramine and luminophores.
COMPOUND FOR ORGANIC ELECTRONIC ELEMENT, ORGANIC ELECTRONIC ELEMENT USING THE SAME, AND AN ELECTRONIC DEVICE THEREOF
-
Paragraph 0105-0109; 0111; 0112-0113, (2020/06/23)
The present invention provides a novel compound capable of improving light emitting efficiency, stability, and lifespan of an element, an organic electronic element using same, and an electronic device for the same. In one aspect, the present invention provides a compound represented by the following chemical formula 1. The compounds according to the present invention by utilizing a light emitting device of high efficiency, low driving voltage, high heat resistance can be achieved, and the color purity of the device can greatly improve the service life.
COMPOUND FOR ORGANIC ELECTRONIC ELEMENT, ORGANIC ELECTRONIC ELEMENT USING THE SAME, AND A ELECTRONIC DEVICE THEREOF
-
Paragraph 0123; 0127-0131, (2020/06/24)
The present invention provides a novel compound capable of improving luminance efficiency, stability, and service life of an element, an organic electronic element using the same, and an electronic device thereof. By using the compound of the present invention, high luminance efficiency, low driving voltage, and high heat resistance of the element can be achieved, and color purity and service life of the element can be greatly improved.
COMPOUND FOR ORGANIC ELECTRONIC ELEMENT, ORGANIC ELECTRONIC ELEMENT USING THE SAME, AND AN ELECTRONIC DEVICE THEREOF
-
Paragraph 0115-0119; 0121-0123, (2020/06/24)
Discloses a novel compound capable of improving the luminous efficiency, stability and lifetime of an element, and an organic electronic element, or an electronic device using the same. (by machine translation)
COMPOUND FOR AN ORGANIC ELECTRONIC ELEMENT, ORGANIC ELECTRONIC ELEMENT USING THE SAME, AND AN ELECTRONIC DEVICE THEREOF
-
Paragraph 0115-0122; 0124, (2020/07/28)
The present invention provides a novel compound capable of improving light emitting efficiency, stability, and lifespan of an element, an organic electronic element using same, and an electronic device for the same. In one aspect, the present invention provides a compound represented by combination of chemical formula 1 and chemical formula 2. The compounds according to the present invention by utilizing a light emitting device of high efficiency, low driving voltage, high heat resistance can be achieved, and the color purity of the device can greatly improve the service life.
Nickel-Catalyzed C-N Cross-Coupling of Ammonia, (Hetero)anilines, and Indoles with Activated (Hetero)aryl Chlorides Enabled by Ligand Design
McGuire, Ryan T.,Paffile, Julia F. J.,Zhou, Yuqiao,Stradiotto, Mark
, p. 9292 - 9297 (2019/10/11)
The Ni(II) precatalyst (C1) featuring the phosphonite ancillary ligand Phen-DalPhos (L1) was employed in the cross-coupling of (hetero)anilines with (hetero)aryl chlorides and in the diarylation of ammonia with (hetero)aryl chlorides to afford heteroatom-dense di(hetero)arylamines. The PAd2-DalPhos precatalyst C4 provided complementary reactivity in cross-couplings of indoles with (hetero)aryl chlorides. Taken together, the demonstration of room-temperature reactivity within each of the reaction classes examined and the observation of useful chemoselectivity at low loading (≤0.5 mol % Ni) and on gram-scale distinguishes C1 and C4 from other metal catalysts (i.e., copper, palladium, nickel, or other) within the field of C-N cross-coupling chemistry.
Hydride-catalyzed selectively reductive cleavage of unactivated tertiary amides using hydrosilane
Yao, Wubing,Li, Rongrong,Yang, Jianguo,Hao, Feiyue
, p. 3874 - 3878 (2019/08/07)
The first hydride-catalyzed reductive cleavage of various unactivated tertiary amides, including the biologically active aryl-phenazine carboxamides and the challenging non-heterocyclic carbonyl functions, using low-cost hydrosilane as a reducing reagent has been developed. The novel catalyst system exhibits high efficiency and exclusive selectivity, providing the desired amines in useful to excellent yields under mild conditions. Overall, this transition metal-free process may offer a versatile alternative to currently employed expensive reducing reagents, high-pressure hydrogen or metal systems for the selective reductive cleavage of amides.