578-58-5Relevant articles and documents
Solvolysis of o-methylbenzenediazonium tetrafluoroborate in acidic methanol-water mixtures. Further evidence for nucleophilic attack on a solvent separated aryl cation
Pazo-Llorente,Sarabia-Rodriguez,Gonzalez-Romero,Bravo-Diaz
, p. 531 - 538 (1999)
Rate constants for dediazoniation product formation and arenediazonium ion loss and product yields of solvolysis of o-methylbenzenediazonium tetrafluoroborate in acidic methanol-water mixtures at T = 35 °C are reported. Observed rate constants for diazonium ion loss and product formation are the same, increasing about 45% ongoing from water to methanol, and are not affected by added electrolytes like HCl, NaCl, and CuCl2. Only three dediazoniation products are detected, o-cresol, o-chlorotoluene, and o-anisole. All data are consistent with a rate-determining step formation of an aryl cation that reacts immediately with available nucleophiles. The selectivity of the reaction toward nucleophiles, S, which can be is low and essentially constant upon changing solvent composition, suggesting that the nucleophilic attack takes place on a solvent separated aryl cation.
N,N,N',N',N' '-pentamethyldipropylenetriamine (PMDPTA): A versatile auxiliary for site selective lithiation reactions
Thurner, Angelika,Faigl, Ferenc,Agai, Bela,Toke, Laszlo
, p. 443 - 449 (1998)
Efficient lithiation processes were developed with PMDPTA, a tridentate ligand of butyllithium reagent for site selective metallation of aromatic and heteroaromatic compounds.
Impact of oxygen vacancies in Ni supported mixed oxide catalysts on anisole hydrodeoxygenation
Ali, Hadi,Kansal, Sushil Kumar,Lauwaert, Jeroen,Saravanamurugan, Shunmugavel,Thybaut, Joris W.,Vandevyvere, Tom
, (2022/03/02)
The hydrodeoxygenation (HDO) activity of anisole has been investigated over Ni catalysts on mixed metal oxide supports containing Nb–Zr and Ti–Zr in 1:1 and 1:4 ratios. XRD patterns indicate the incorporation of Ti (or Nb) into the ZrO2 framewo
Ceramic boron carbonitrides for unlocking organic halides with visible light
Yuan, Tao,Zheng, Meifang,Antonietti, Markus,Wang, Xinchen
, p. 6323 - 6332 (2021/05/19)
Photochemistry provides a sustainable pathway for organic transformations by inducing radical intermediates from substrates through electron transfer process. However, progress is limited by heterogeneous photocatalysts that are required to be efficient, stable, and inexpensive for long-term operation with easy recyclability and product separation. Here, we report that boron carbonitride (BCN) ceramics are such a system and can reduce organic halides, including (het)aryl and alkyl halides, with visible light irradiation. Cross-coupling of halides to afford new C-H, C-C, and C-S bonds can proceed at ambient reaction conditions. Hydrogen, (het)aryl, and sulfonyl groups were introduced into the arenes and heteroarenes at the designed positions by means of mesolytic C-X (carbon-halogen) bond cleavage in the absence of any metal-based catalysts or ligands. BCN can be used not only for half reactions, like reduction reactions with a sacrificial agent, but also redox reactions through oxidative and reductive interfacial electron transfer. The BCN photocatalyst shows tolerance to different substituents and conserved activity after five recycles. The apparent metal-free system opens new opportunities for a wide range of organic catalysts using light energy and sustainable materials, which are metal-free, inexpensive and stable. This journal is
Metal-Organic Framework-Confined Single-Site Base-Metal Catalyst for Chemoselective Hydrodeoxygenation of Carbonyls and Alcohols
Antil, Neha,Kumar, Ajay,Akhtar, Naved,Newar, Rajashree,Begum, Wahida,Manna, Kuntal
supporting information, p. 9029 - 9039 (2021/06/28)
Chemoselective deoxygenation of carbonyls and alcohols using hydrogen by heterogeneous base-metal catalysts is crucial for the sustainable production of fine chemicals and biofuels. We report an aluminum metal-organic framework (DUT-5) node support cobalt(II) hydride, which is a highly chemoselective and recyclable heterogeneous catalyst for deoxygenation of a range of aromatic and aliphatic ketones, aldehydes, and primary and secondary alcohols, including biomass-derived substrates under 1 bar H2. The single-site cobalt catalyst (DUT-5-CoH) was easily prepared by postsynthetic metalation of the secondary building units (SBUs) of DUT-5 with CoCl2 followed by the reaction of NaEt3BH. X-ray photoelectron spectroscopy and X-ray absorption near-edge spectroscopy (XANES) indicated the presence of CoII and AlIII centers in DUT-5-CoH and DUT-5-Co after catalysis. The coordination environment of the cobalt center of DUT-5-Co before and after catalysis was established by extended X-ray fine structure spectroscopy (EXAFS) and density functional theory. The kinetic and computational data suggest reversible carbonyl coordination to cobalt preceding the turnover-limiting step, which involves 1,2-insertion of the coordinated carbonyl into the cobalt-hydride bond. The unique coordination environment of the cobalt ion ligated by oxo-nodes within the porous framework and the rate independency on the pressure of H2 allow the deoxygenation reactions chemoselectively under ambient hydrogen pressure.
Encapsulated Ni-Co alloy nanoparticles as efficient catalyst for hydrodeoxygenation of biomass derivatives in water
Chen, Chun,Gong, Wanbing,Han, Miaomiao,Wang, Dongdong,Wang, Guozhong,Zhang, Haimin,Zhang, Jifang,Zhang, Yunxia,Zhao, Huijun
, p. 2027 - 2037 (2021/09/02)
Catalytic hydrodeoxygenation (HDO) is one of the most promising strategies to transform oxygen-rich biomass derivatives into high value-added chemicals and fuels, but highly challenging due to the lack of highly efficient nonprecious metal catalysts. Herein, we report for the first time of a facile synthetic approach to controllably fabricate well-defined Ni-Co alloy NPs confined on the tip of N-CNTs as HDO catalyst. The resultant Ni-Co alloy catalyst possesses outstanding HDO performance towards biomass-derived vanillin into 2-methoxy-4-methylphenol in water with 100% conversion efficiency and selectivity under mild reaction conditions, surpassing the reported high performance nonprecious HDO catalysts. Impressively, our experimental results also unveil that the Ni-Co alloy catalyst can be generically applied to catalyze HDO of vanillin derivatives and other aromatic aldehydes in water with 100% conversion efficiency and over 90% selectivity. Importantly, our DFT calculations and experimental results confirm that the achieved outstanding HDO catalytic performance is due to the greatly promoted selective adsorption and activation of C=O, and desorption of the activated hydrogen species by the synergism of the alloyed Ni-Co NPs. The findings of this work affords a new strategy to design and develop efficient transition metal-based catalysts for HDO reactions in water.
Catalytic SNAr Hydroxylation and Alkoxylation of Aryl Fluorides
Kang, Qi-Kai,Li, Ke,Li, Yuntong,Lin, Yunzhi,Shi, Hang,Xu, Lun
supporting information, p. 20391 - 20399 (2021/08/13)
Nucleophilic aromatic substitution (SNAr) is a powerful strategy for incorporating a heteroatom into an aromatic ring by displacement of a leaving group with a nucleophile, but this method is limited to electron-deficient arenes. We have now established a reliable method for accessing phenols and phenyl alkyl ethers via catalytic SNAr reactions. The method is applicable to a broad array of electron-rich and neutral aryl fluorides, which are inert under classical SNAr conditions. Although the mechanism of SNAr reactions involving metal arene complexes is hypothesized to involve a stepwise pathway (addition followed by elimination), experimental data that support this hypothesis is still under exploration. Mechanistic studies and DFT calculations suggest either a stepwise or stepwise-like energy profile. Notably, we isolated a rhodium η5-cyclohexadienyl complex intermediate with an sp3-hybridized carbon bearing both a nucleophile and a leaving group.
Optimizing the carburization conditions of supported rhenium carbide for guaiacol conversion
Blanco, Elodie,Dongil, Ana Belén,Escalona, Néstor,García-Fierro, Jose Luis,Ghampson, I. Tyrone
, (2021/06/26)
The present work evaluates the effect of ethylene content of a carburization mixture on the formation of carburized rhenium supported on activated carbon. The resulting catalysts were characterized by N2 physisorption, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and temperature-programmed reduction, and the results show a strong effect on the final phase obtained. A high amount of ethylene inhibited the carburization process, resulting in carbon formation, while a lower amount (≤ 35 %) of ethylene was favorable to the formation of the carbide phase. The catalysts were evaluated for the hydrodeoxygenation (HDO) of guaiacol, a bio-oil model compound, and a high yield of benzene (50 %), a desirable aromatic compound, was obtained at complete conversion over the catalysts containing the carbide phase.
Trialkylammonium salt degradation: Implications for methylation and cross-coupling
Assante, Michele,Baillie, Sharon E.,Juba, Vanessa,Leach, Andrew G.,McKinney, David,Reid, Marc,Washington, Jack B.,Yan, Chunhui
, p. 6949 - 6963 (2021/06/02)
Trialkylammonium (most notably N,N,N-trimethylanilinium) salts are known to display dual reactivity through both the aryl group and the N-methyl groups. These salts have thus been widely applied in cross-coupling, aryl etherification, fluorine radiolabelling, phase-transfer catalysis, supramolecular recognition, polymer design, and (more recently) methylation. However, their application as electrophilic methylating reagents remains somewhat underexplored, and an understanding of their arylation versus methylation reactivities is lacking. This study presents a mechanistic degradation analysis of N,N,N-trimethylanilinium salts and highlights the implications for synthetic applications of this important class of salts. Kinetic degradation studies, in both solid and solution phases, have delivered insights into the physical and chemical parameters affecting anilinium salt stability. 1H NMR kinetic analysis of salt degradation has evidenced thermal degradation to methyl iodide and the parent aniline, consistent with a closed-shell SN2-centred degradative pathway, and methyl iodide being the key reactive species in applied methylation procedures. Furthermore, the effect of halide and non-nucleophilic counterions on salt degradation has been investigated, along with deuterium isotope and solvent effects. New mechanistic insights have enabled the investigation of the use of trimethylanilinium salts in O-methylation and in improved cross-coupling strategies. Finally, detailed computational studies have helped highlight limitations in the current state-of-the-art of solvation modelling of reaction in which the bulk medium undergoes experimentally observable changes over the reaction timecourse. This journal is
Decyanation method of nitrile organic compound
-
Paragraph 0055-0058, (2020/02/10)
The invention provides a decyanation method of a nitrile organic compound. The nitrile organic compound shown in a general formula (1), a sodium reagent, crown ether and a proton donor are subjected to decyanation reaction in an organic solvent I to generate an organic compound shown in a general formula (2). According to the method, a Na/15-crown-5/H2O system is adopted, so that nitrile organic matters can be converted into a decyanation product, and the generation of amine byproducts is inhibited. The new method does not need to use liquid ammonia as a solvent, and is safer and more convenient to operate. The required sodium dispersoid is low in price; and the 15-crown-5 can be recycled and repeatedly used. The method has the advantages of good chemical selectivity, wide substrate application range, good functional group compatibility and the like.