58-97-9Relevant articles and documents
Construction of a plasmid carrying both CTP synthetase and a fused gene formed from cholinephosphate cytidylyltransferase and choline kinase genes and its application to industrial CDP-choline production: Enzymatic production of CDP-choline from orotic acid (Part II)
Fujio,Teshiba,Maruyama
, p. 960 - 964 (1997)
A new method for enzymatic production of cytidine diphosphate choline (CDP-choline) from orotic acid and choline chloride was developed. To establish an industrial manufacturing process, we constructed a plasmid, pCKG55, which simultaneously expressed in Escherichia coli the three following enzymes; CTP synthetase (encoded by the pyrG gene from E. colt), cholinephosphate cytidylyltransferase (encoded by the CCT gene from Saccharomyces cerevisiae), and choline kinase (encoded by the CKI gene from S. cerevisiae). CCT and CKI genes on pCKG55 were designed to be expressed as a single CCT/CKI fused protein. This CCT/CKI fused protein retained both activities and the thermal stability of its cholinephosphate cytidylyltransferase activity was nearly the same as the native CCT enzyme. Corynebacterium ammoniagenes KY13505 and E. coli MM294/pCKG55 were cultured in 5-liter jar fermentor independently. Equal volumes of each broth were mixed in a 2-liter jar fermentor, and then the enzymatic reaction was done using 47 mM orotic acid and 60 mM choline chloride as substrates. After 23 h of the reaction at 32°C, 21.5 mM (11 g/liter) of CDP-choline was accumulated.
Enzymatic production of pyrimidine nucleotides using corynebacterium ammoniagenes cells and recombinant Escherichia coli cells: Enzymatic production of CDP-choline from orotic acid and choline chloride (Part I)
Fujio,Akihiko
, p. 956 - 959 (1997)
Enzymatic production of cytidine diphosphate choline (CDP-choline) using orotic acid and choline chloride as substrates was investigated using a 200-ml beaker as a reaction vessel. When Corynebacterium ammoniagenes KY13505 cells were used as the enzyme source, UMP was accumulated up to 28.6g/liter (77.6 mM) from orotic acid after 26 h of reaction. In this reaction, UDP and UTP were also accumulated, but CTP, a direct precursor of CDP-choline, was not accumulated sufficiently. Escherichia coli JF646/pMW6 cells, which overproduce CTP synthetase by selfcloning of the pyrG gene, were used together with cells of KY13505 for the enzymatic reaction using orotic acid as a substrate. CTP was produced at 8.95g/liter (15.1 mM) after 23 h of this reaction. To produce CDP-choline, two additional enzyme activities were needed. E. coli MM294/pUCK3 and MM294/pCC41 cells, which express a choline kinase from Saccharomyces cerevisiae (CCTase; encoded by the CKIgene) and a cholinephosphate cytidylyltransferase from S. cerevisiae (CCTase; encoded by the CCT gene) respectively, were added to this CTP-producing reaction system. After 23 h of the reaction using orotic acid and choline chloride as substrates, 7.7 g/liter (15.1 mM) of CDP-choline was accumulated without addition of ATP or phosphoribosylpyrophosphate (PRPP). ATP and PRPP required in the CDP-choline forming reaction system are biosynthesized by those cells using glucose as a substrate.
Solution structure of the nucleotide hydrolase BlsM: Implication of its substrate specificity
Kang, Minhee,Doddapaneni, Kiran,Sarni, Samantha,Heppner, Zach,Wysocki, Vicki,Wu, Zhengrong
, p. 1760 - 1773 (2020/07/27)
Biosynthesis of the peptidyl nucleoside antifungal agent blasticidin S in Streptomyces griseochromogenes requires the hydrolytic function of a nucleotide hydrolase, BlsM, to excise the free cytosine from the 5′-monophosphate cytosine nucleotide. In addition to its hydrolytic activity, interestingly, BlsM has also been shown to possess a novel cytidine deaminase activity, converting cytidine, and deoxycytidine to uridine and deoxyuridine. To gain insight into the substrate specificity of BlsM and the mechanism by which it performs these dual function, the solution structure of BlsM was determined by multi-dimensional nuclear magnetic resonance approaches. BlsM displays a nucleoside deoxyribosyltransferase-like dimeric topology, with each monomer consisting of a five-stranded β-sheet that is sandwiched by five α-helixes. Compared with the purine nucleotide hydrolase RCL, each monomer of BlsM has a smaller active site pocket, enclosed by a group of conserved hydrophobic residues from both monomers. The smaller size of active site is consistent with its substrate specificity for a pyrimidine, whereas a much more open active site, as in RCL might be required to accommodate a larger purine ring. In addition, BlsM confers its substrate specificity for a ribosyl-nucleotide through a key residue, Phe19. When mutated to a tyrosine, F19Y reverses its substrate preference. While significantly impaired in its hydrolytic capability, F19Y exhibited a pronounced deaminase activity on CMP, presumably due to an altered substrate orientation as a result of a steric clash between the 2′-hydroxyl of CMP and the ζ-OH group of F19Y. Finally, Glu105 appears to be critical for the dual function of BlsM.
Kinetic and NMR spectroscopic study of the chemical stability and reaction pathways of sugar nucleotides
Jaakkola, Juho,Nieminen, Anu,Kivel?, Henri,Korhonen, Heidi,T?htinen, Petri,Mikkola, Satu
, p. 178 - 193 (2020/12/21)
The alkaline cleavage of two types of sugar nucleotides has been studied by 1H and 31P NMR in order to obtain information on the stability and decomposition pathways in aqueous solutions under alkaline conditions. The reaction of glucose 1-UDP is straightforward, and products are easy to identify. The results obtained with ribose 5-UDP and ribose 5-phosphate reveal, in contrast, a more complex reaction system than expected, and the identification of individual intermediate species was not possible. Even though definite proof for the mechanisms previously proposed could not be obtained, all the spectroscopic evidence is consistent with them. Results also emphasise the significant effect of conditions, pH, ionic strength, and temperature, on the reactivity under chemical conditions.
Practical preparation of UDP-apiose and its applications for studying apiosyltransferase
Fujimori, Tae,Matsuda, Ryoko,Suzuki, Mami,Takenaka, Yuto,Kajiura, Hiroyuki,Takeda, Yoichi,Ishimizu, Takeshi
, p. 20 - 25 (2019/04/01)
UDP-apiose, a donor substrate of apiosyltransferases, is labile because of its intramolecular self-cyclization ability, resulting in the formation of apiofuranosyl-1,2-cyclic phosphate. Therefore, stabilization of UDP-apiose is indispensable for its availability and identifying and characterizing the apiosyltransferases involved in the biosynthesis of apiosylated sugar chains and glycosides. Here, we established a method for stabilizing UDP-apiose using bulky cations as counter ions. Bulky cations such as triethylamine effectively suppressed the degradation of UDP-apiose in solution. The half-life of UDP-apiose was increased to 48.1 ± 2.4 h at pH 6.0 and 25 °C using triethylamine as a counter cation. UDP-apiose coordinated with a counter cation enabled long-term storage under freezing conditions. UDP-apiose was utilized as a donor substrate for apigenin 7-O-β-D-glucoside apiosyltransferase to produce the apiosylated glycoside apiin. This apiosyltransferase assay will be useful for identifying genes encoding apiosyltransferases.
Enzymatic Production of Non-Natural Nucleoside-5′-Monophosphates by a Thermostable Uracil Phosphoribosyltransferase
del Arco, Jon,Acosta, Javier,Pereira, Humberto M.,Perona, Almudena,Lokanath, Neratur K.,Kunishima, Naoki,Fernández-Lucas, Jesús
, p. 439 - 448 (2017/12/13)
The use of enzymes as biocatalysts applied to synthesis of modified nucleoside-5′-monophosphates (NMPs) is an interesting alternative to traditional multistep chemical methods which offers several advantages, such as stereo-, regio-, and enantioselectivity, simple downstream processing, and mild reaction conditions. Herein we report the recombinant expression, production, and purification of uracil phosphoribosyltransferase from Thermus themophilus HB8 (TtUPRT). The structure of TtUPRT has been determined by protein crystallography, and its substrate specificity and biochemical characteristics have been analyzed, providing new structural insights into the substrate-binding mode. Biochemical characterization of the recombinant protein indicates that the enzyme is a homotetramer, with activity and stability across a broad range of temperatures (50–80 °C), pH (5.5–9) and ionic strength (0–500 mm NaCl). Surprisingly, TtUPRT is able to recognize several 5 and 6-substituted pyrimidines as substrates. These experimental results suggest TtUPRT could be a valuable biocatalyst for the synthesis of modified NMPs.
Identification and characterization of UDP-mannose in human cell lines and mouse organs: Differential distribution across brain regions and organs
Nakajima, Kazuki,Kizuka, Yasuhiko,Yamaguchi, Yoshiki,Hirabayashi, Yoshio,Takahashi, Kazuo,Yuzawa, Yukio,Taniguchi, Naoyuki
, p. 401 - 407 (2017/11/17)
Mannosylation in the endoplasmic reticulum is a key process for synthesizing various glycans. Guanosine diphosphate mannose (GDP-Man) and dolichol phosphate-mannose serve as donor substrates for mannosylation in mammals and are used in N-glycosylation, O-mannosylation, C-mannosylation, and the synthesis of glycosylphosphatidylinositol-anchor (GPI-anchor). Here, we report for the first time that low-abundant uridine diphosphate-mannose (UDP-Man), which can serve as potential donor substrate, exists in mammals. Liquid chromatography-mass spectrometry (LC-MS) analyses showed that mouse brain, especially hypothalamus and neocortex, contains higher concentrations of UDP-Man compared to other organs. In cultured human cell lines, addition of mannose in media increased UDP-Man concentrations in a dose-dependent manner. These findings indicate that in mammals the minor nucleotide sugar UDP-Man regulates glycosylation, especially mannosylation in specific organs or conditions.
cUMP hydrolysis by PDE3A
Berrisch, Stefan,Ostermeyer, Jessica,Kaever, Volkhard,K?lble, Solveig,Hilfiker-Kleiner, Denise,Seifert, Roland,Schneider, Erich H.
, p. 269 - 280 (2017/02/18)
As previously reported, the cardiac phosphodiesterase PDE3A hydrolyzes cUMP. Moreover, cUMP-degrading activity was detected in cow and dog hearts several decades ago. Our aim was to characterize the enzyme kinetic parameters of PDE3A-mediated cUMP hydrolysis and to investigate whether cUMP and cUMP-hydrolyzing PDEs are present in cardiomyocytes. PDE3A-mediated cUMP hydrolysis was characterized in time course, inhibitor, and Michaelis-Menten kinetics experiments. Intracellular cyclic nucleotide (cNMP) concentrations and the mRNAs of cUMP-degrading PDEs were quantitated in neonatal rat cardiomyocytes (NRCMs) and murine HL-1 cardiomyogenic cells. Moreover, we investigated cUMP degradation in HL-1 cell homogenates and intact cells. Educts (cNMPs) and products (NMPs) of the PDE reactions were detected by HPLC-coupled tandem mass spectrometry. PDE3A degraded cUMP (measurement of UMP formation) with a KM value of ~143?μM and a Vmax value of ~42?μmol/min/mg. PDE3A hydrolyzed cAMP with a KM value of ~0.7?μM and a Vmax of ~1.2?μmol/min/mg (determination of AMP formation). The PDE3 inhibitor milrinone inhibited cUMP hydrolysis (determination of UMP formation) by PDE3A (Ki?=?57?nM). Significant amounts of cUMP as well as of PDE3A mRNA (in addition to PDE3B and PDE9A transcripts) were detected in HL-1 cells and NRCMs. Although HL-1 cell homogenates contain a milrinone-sensitive cUMP-hydrolyzing activity, intact HL-1 cells may use additional PDE3-independent mechanisms for cUMP disposal. PDE3A is a low-affinity and high-velocity PDE for cUMP. Future studies should investigate biological effects of cUMP in cardiomyocytes and the role of PDE3A in detoxifying high intracellular cUMP concentrations under pathophysiological conditions.
Chemical synthesis and isolation of UDP-2-deoxy glucose and galactose
Miyagawa, Atsushi,Takeuchi, Shunya,Itoda, Shinji,Toyama, Sanami,Kurimoto, Kenta,Yamamura, Hatsuo,Ito, Yukishige
supporting information, p. 1790 - 1795 (2016/11/18)
2-Deoxy sugars are attractive compounds in synthetic chemistry with regard to reactivity and stereoselectivity. Moreover, their ability to inhibit enzymes and metabolism is significant in biology. In this study, uridine-5′-diphosphate (UDP)-2-deoxy glucose (11) and galactose (12) were synthesized chemically. These sugar donors for glycosyltransferases were obtained α-selectively via phosphorylation using thioglycosides, coupling reaction with uridine-5′-monophosphate (UMP)-morpholidate, and moderate deacetylation. Isolation was carried out by sequential silica-gel chromatography using two kinds of developing solvents in a refrigerator. The structures were elucidated from the NMR results. Investigation of stability showed that the synthesized UDP-2-deoxy sugars were hydrolyzed much faster in buffer (pH 4) than the natural UDP sugars.
Fully automated continuous meso-flow synthesis of 5′-nucleotides and deoxynucleotides
Zhu, Chenjie,Tang, Chenglun,Cao, Zhi,He, Wei,Chen, Yong,Chen, Xiaochun,Guo, Kai,Ying, Hanjie
, p. 1575 - 1581 (2015/02/19)
The first continuous meso-flow synthesis of natural and non-natural 5′-nucleotides and deoxynucleotides is described, representing a significant advance over the corresponding in-flask method. By means of this meso-flow technique, a synthesis with time consumption and high-energy consumption becomes facile to generate products with great efficiency. An abbreviated duration, satisfactory output, and mild reaction conditions are expected to be realized under the present procedure.