Welcome to LookChem.com Sign In|Join Free

CAS

  • or

6531-13-1

Post Buying Request

6531-13-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

6531-13-1 Usage

Synthesis Reference(s)

The Journal of Organic Chemistry, 54, p. 949, 1989 DOI: 10.1021/jo00265a040Tetrahedron Letters, 24, p. 2575, 1983 DOI: 10.1016/S0040-4039(00)81985-1

Check Digit Verification of cas no

The CAS Registry Mumber 6531-13-1 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 6,5,3 and 1 respectively; the second part has 2 digits, 1 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 6531-13:
(6*6)+(5*5)+(4*3)+(3*1)+(2*1)+(1*3)=81
81 % 10 = 1
So 6531-13-1 is a valid CAS Registry Number.
InChI:InChI=1/C8H9NO3/c1-6(10)7-2-4-8(5-3-7)9(11)12/h2-6,10H,1H3

6531-13-1SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name 1-(4-NITROPHENYL)ETHANOL

1.2 Other means of identification

Product number -
Other names 4-(NO2)C6H4CH(OH)Me

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:6531-13-1 SDS

6531-13-1Relevant articles and documents

Phase Separation-Promoted Redox Deracemization of Secondary Alcohols over a Supported Dual Catalysts System

Zhao, Zhitong,Wang, Chengyi,Chen, Qipeng,Wang, Yu,Xiao, Rui,Tan, Chunxia,Liu, Guohua

, p. 4055 - 4063 (2021/08/12)

Unification of oxidation and reduction in a one-pot deracemization process has great significance in the preparation of enantioenriched organic molecules. However, the intrinsic mutual deactivation of oxidative and reductive catalysts and the extrinsic incompatible reaction conditions are unavoidable challenges in a single operation. To address these two issues, we develop a supported dual catalysts system to overcome these conflicts from incompatibility to compatibility, resulting in an efficient one-pot redox deracemization of secondary alcohols. During this transformation, the TEMPO species onto the outer surface of silica nanoparticles catalyze the oxidation of racemic alcohols to ketones, and the chiral Rh/diamine species in the nanochannels of the thermoresponsive polymer-coated hollow-shell mesoporous silica enable the asymmetric transfer hydrogenation (ATH) of ketones to chiral alcohols. To demonstrate the general feasibility, a series of orthogonal oxidation/ATH cascade reactions are compared to prove the compatible benefits in the elimination of their deactivations and the balance of the cascade directionality. As presented in this study, this redox deracemization process provides various chiral alcohols with enhanced yields and enantioselectivities relative to those from unsupported dual catalysts systems. Furthermore, the dual catalysts can be recycled continuously, making them an attractive feature in the application.

Arene-Immobilized Ru(II)/TsDPEN Complexes: Synthesis and Applications to the Asymmetric Transfer Hydrogenation of Ketones

Doherty, Simon,Knight, Julian G.,Alshaikh, Hind,Wilson, James,Waddell, Paul G.,Wills, Corinne,Dixon, Casey M.

supporting information, p. 226 - 235 (2020/12/31)

The Noyori-Ikariya (arene)Ru(II)/TsDPEN precatalyst has been anchored to amorphous silica and DAVISIL through the η6-coordinated arene ligand via a straightforward synthesis and the derived systems, (arene)Ru(II)/TsDPEN@silica and (arene)Ru(II)/TsDPEN@DAVISIL, form highly efficient catalysts for the asymmetric transfer hydrogenation of a range of electron-rich and electron-poor aromatic ketones, giving good conversion and excellent ee's under mild reaction conditions. Moreover, catalyst generated in situ immediately prior to addition of substrate and hydrogen donor, by reaction of silica-supported [(arene)RuCl2]2 with (S,S)-TsDPEN, was as efficient as that generated from its preformed counterpart [(arene)Ru{(S,S)-TsDPEN}Cl]@silica. Gratifyingly, the initial TOFs (up to 1085 h?1) and ee's (96–97 %) obtained with these catalysts either rivalled or outperformed those previously reported for catalysts supported by either silica or polymer immobilized through one of the nitrogen atoms of TsDPEN. While the high ee's were also maintained during recycle studies, the conversion dropped steadily over the first three runs due to gradual leaching of the ruthenium.

The Stereoselective Oxidation of para-Substituted Benzenes by a Cytochrome P450 Biocatalyst

Chao, Rebecca R.,Lau, Ian C.-K.,Coleman, Tom,Churchman, Luke R.,Child, Stella A.,Lee, Joel H. Z.,Bruning, John B.,De Voss, James J.,Bell, Stephen G.

supporting information, p. 14765 - 14777 (2021/09/14)

The serine 244 to aspartate (S244D) variant of the cytochrome P450 enzyme CYP199A4 was used to expand its substrate range beyond benzoic acids. Substrates, in which the carboxylate group of the benzoic acid moiety is replaced were oxidised with high activity by the S244D mutant (product formation rates >60 nmol.(nmol-CYP)?1.min?1) and with total turnover numbers of up to 20,000. Ethyl α-hydroxylation was more rapid than methyl oxidation, styrene epoxidation and S-oxidation. The S244D mutant catalysed the ethyl hydroxylation, epoxidation and sulfoxidation reactions with an excess of one stereoisomer (in some instances up to >98 %). The crystal structure of 4-methoxybenzoic acid-bound CYP199A4 S244D showed that the active site architecture and the substrate orientation were similar to that of the WT enzyme. Overall, this work demonstrates that CYP199A4 can catalyse the stereoselective hydroxylation, epoxidation or sulfoxidation of substituted benzene substrates under mild conditions resulting in more sustainable transformations using this heme monooxygenase enzyme.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 6531-13-1