Welcome to LookChem.com Sign In|Join Free

CAS

  • or

768-22-9

Post Buying Request

768-22-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

768-22-9 Usage

General Description

Indene oxide, also known as 1,2-epoxy-1,2,3,4-tetrahydronaphthalene, is a chemical compound that contains a cyclohexene ring fused with a benzene ring and an epoxide functional group. It is a colorless to light yellow liquid at room temperature and is used as a reactive intermediate in the production of various chemical compounds, including pharmaceuticals, perfumes, and industrial chemicals. Indene oxide has been studied for its potential use as a chiral building block in organic synthesis and as a starting material for the synthesis of biologically active compounds. It is also known to be a skin irritant and should be handled with care in laboratory and industrial settings.

Check Digit Verification of cas no

The CAS Registry Mumber 768-22-9 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 7,6 and 8 respectively; the second part has 2 digits, 2 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 768-22:
(5*7)+(4*6)+(3*8)+(2*2)+(1*2)=89
89 % 10 = 9
So 768-22-9 is a valid CAS Registry Number.
InChI:InChI=1/C9H8O/c1-2-4-7-6(3-1)5-8-9(7)10-8/h1-4,8-9H,5H2

768-22-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 16, 2017

Revision Date: Aug 16, 2017

1.Identification

1.1 GHS Product identifier

Product name Indene oxide

1.2 Other means of identification

Product number -
Other names 1H-Indene,1,2-epoxy-2,3-dihydro

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:768-22-9 SDS

768-22-9Relevant articles and documents

A very simple method to synthesize nano-sized manganese oxide: An efficient catalyst for water oxidation and epoxidation of olefins

Najafpour, Mohammad Mahdi,Rahimi, Fahimeh,Amini, Mojtaba,Nayeri, Sara,Bagherzadeh, Mojtaba

, p. 11026 - 11031 (2012)

Nano-sized particles of manganese oxides have been prepared by a very simple and cheap process using a decomposing aqueous solution of manganese nitrate at 100 °C. Scanning electron microscopy, transmission electron microscopy and X-ray diffraction spectrometry have been used to characterize the phase and the morphology of the manganese oxide. The nano-sized manganese oxide shows efficient catalytic activity toward water oxidation and the epoxidation of olefins in the presence of cerium(iv) ammonium nitrate and hydrogen peroxide, respectively.

Biomimetic epoxidation of alkenes with sodium periodate catalyzed by tetraphenylporphyrinatomanganese(III) chloride supported on multiwall carbon nanotubes

Zakeri, Maryam,Moghadam, Majid,Mohammadpoor-Baltork, Iraj,Tangestaninejad, Shahram,Mirkhani, Valiollah,Khosropour, Ahmad Reza,Alizadeh, Mohammad

, p. 45 - 53 (2012)

The biomimetic epoxidation of alkenes catalyzed by tetraphenylporphyrinatomanganese(III) chloride, [Mn(TPP)Cl], immobilized on multiwall carbon nanotubes modified with 4-aminopyridine and 4-aminophenol is reported. These heterogenized catalysts were used as efficient and reusable catalysts for epoxidation of a variety of cyclic and linear alkenes with sodium periodate under mild conditions. The catalysts, [Mn(TPP)Cl@amine-MWCNT], were characterized by physico-chemical and spectroscopic methods. The effect of ultrasonic irradiation on these catalytic systems was also investigated. The catalysts were reused several times without loss of their activity. Springer Science+Business Media B.V. 2011.

Chiral porous poly(ionic liquid)s: Facile one-pot, one-step synthesis and efficient heterogeneous catalysts for asymmetric epoxidation of olefins

Tian, Yabing,Wang, Jixia,Zhang, Shiguo,Zhang, Yan

, (2022/01/26)

Ionic liquids are potential media/solvents for asymmetric synthesis when combined with chiral catalysts, while most reported catalysts are homogenous, making them difficult to separate from the reaction systems. Herein, chiral porous poly(ionic liquid)s (

Efficient and selective oxidation of hydrocarbons with tert-butyl hydroperoxide catalyzed by oxidovanadium(IV) unsymmetrical Schiff base complex supported on γ-Fe2O3 magnetic nanoparticles

Samani, Mahnaz,Ardakani, Mehdi Hatefi,Sabet, Mohammad

, p. 1481 - 1494 (2022/01/22)

The catalytic activity of an oxidovanadium(IV) unsymmetrical Schiff base complex supported on γ-Fe2O3 magnetic nanoparticles, γ-Fe2O3@[VO(salenac-OH)] in which salenac-OH = [9-(2′,4′-dihydroxyphenyl)-5,8-diaza-4

Asymmetric azidohydroxylation of styrene derivatives mediated by a biomimetic styrene monooxygenase enzymatic cascade

Franssen, Maurice C. R.,Hollmann, Frank,Martínez-Montero, Lía,Paul, Caroline E.,Süss, Philipp,Schallmey, Anett,Tischler, Dirk

, p. 5077 - 5085 (2021/08/16)

Enantioenriched azido alcohols are precursors for valuable chiral aziridines and 1,2-amino alcohols, however their chiral substituted analogues are difficult to access. We established a cascade for the asymmetric azidohydroxylation of styrene derivatives leading to chiral substituted 1,2-azido alcohols via enzymatic asymmetric epoxidation, followed by regioselective azidolysis, affording the azido alcohols with up to two contiguous stereogenic centers. A newly isolated two-component flavoprotein styrene monooxygenase StyA proved to be highly selective for epoxidation with a nicotinamide coenzyme biomimetic as a practical reductant. Coupled with azide as a nucleophile for regioselective ring opening, this chemo-enzymatic cascade produced highly enantioenriched aromatic α-azido alcohols with up to >99% conversion. A bi-enzymatic counterpart with halohydrin dehalogenase-catalyzed azidolysis afforded the alternative β-azido alcohol isomers with up to 94% diastereomeric excess. We anticipate our biocatalytic cascade to be a starting point for more practical production of these chiral compounds with two-component flavoprotein monooxygenases.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 768-22-9