96-76-4Relevant articles and documents
Unusual C-C bond cleavage in the formation of amine-bis(phenoxy) group 4 benzyl complexes: Mechanism of formation and application to stereospecific polymerization
Gowda, Ravikumar R.,Caporaso, Lucia,Cavallo, Luigi,Chen, Eugene Y.-X.
, p. 4118 - 4130 (2014)
Group 4 tetrabenzyl compounds MBn4 (M = Zr, Ti), upon protonolysis with an equimolar amount of the tetradentate amine-tris(phenol) ligand N[(2,4-tBu2C6H2(CH 2)OH]3 in toluene from -30 to 25 °C, unexpectedly lead to amine-bis(phenoxy) dibenzyl complexes, BnCH2N[(2,4- tBu2C6H2(CH2)O] 2MBn2 (M = Zr (1), Ti (2)) in 80% (1) and 75% (2) yields. This reaction involves an apparent cleavage of the >NCH2-ArOH bond (loss of the phenol in the ligand) and formation of the >NCH 2-CH2Bn bond (gain of the benzyl group in the ligand). Structural characterization of 1 by X-ray diffraction analysis confirms that the complex formed is a bis(benzyl) complex of Zr coordinated by a newly derived tridentate amine-bis(phenoxy) ligand arranged in a mer configuration in the solid state. The abstractive activation of 1 and 2 with B(C6F 5)3·THF in CD2Cl2 at room temperature generates the corresponding benzyl cations {BnCH2N[(2,4- tBu2C6H2(CH2)O] 2MBn(THF)}+[BnB(C6F5) 3]- (M = Zr (3), Ti, (4)). These cationic complexes, along with their analogues derived from (imino)phenoxy tri- and dibenzyl complexes, [(2,6-iPr2C6H3)N=C(3,5- tBu2C6H2)O]ZrBn3 (5) and [2,4-Br2C6H2(O)(6-CH2(NC 5H9))CH2N=CH(2-adamantyl-4-MeC 6H2O)]ZrBn2 (6), have been found to effectively polymerize the biomass-derived renewable β-methyl-α-methylene- γ-butyrolactone (βMMBL) at room temperature into the highly stereoregular polymer PβMMBL with an isotacticity up to 99% mm. A combined experimental and DFT study has yielded a mechanistic pathway for the observed unusual C-C bond cleavage in the present protonolysis reaction between ZrBn4 and N[(2,4-tBu2C 6H2(CH2)OH]3 for the formation of complex 1, which involves the benzyl radical and the Zr(III) species, resulting from thermal and photochemical decomposition of ZrBn4, followed by a series of reaction sequences consisting of protonolysis, tautomerization, H-transfer, oxidation, elimination, and radical coupling.
Increasing the steric hindrance around the catalytic core of a self-assembled imine-based non-heme iron catalyst for C-H oxidation
Frateloreto, Federico,Capocasa, Giorgio,Olivo, Giorgio,Abdel Hady, Karim,Sappino, Carla,Di Berto Mancini, Marika,Levi Mortera, Stefano,Lanzalunga, Osvaldo,Di Stefano, Stefano
, p. 537 - 542 (2021/02/09)
Sterically hindered imine-based non-heme complexes4and5rapidly self-assemble in acetonitrile at 25 °C, when the corresponding building blocks are added in solution in the proper ratios. Such complexes are investigated as catalysts for the H2O2oxidation of a series of substrates in order to ascertain the role and the importance of the ligand steric hindrance on the action of the catalytic core1, previously shown to be an efficient catalyst for aliphatic and aromatic C-H bond oxidation. The study reveals a modest dependence of the output of the oxidation reactions on the presence of bulky substituents in the backbone of the catalyst, both in terms of activity and selectivity. This result supports a previously hypothesized catalytic mechanism, which is based on the hemi-lability of the metal complex. In the active form of the catalyst, one of the pyridine arms temporarily leaves the iron centre, freeing up a lot of room for the access of the substrate.
Alkylation of Phenol with tert-Butanol in a Draining-Film Reactor
Maksimov, A. L.,Mel’chakov, I. S.,Terekhov, A. V.,Zanaveskin, L. N.
, p. 569 - 575 (2021/07/26)
The alkylation of phenol with tert-butanol in a displacement draining-film reactor on a heterogeneous catalyst, Beta zeolite, was evaluated. Optimum process conditions ensuring the maximal p-tert-butylphenol yield were determined: phenol:tert-butanol molar ratio (3–3.5):1, superficial liquid velocity 1.0–1.5 m3 m–2 h–1, and temperature 100°C–110°C. A procedure ensuring 100% conversion of tert-butanol and isobutylene (a by-product formed from tert-butanol) was observed.
Alkylation of Phenols with tert-Butanol Catalyzed by H-Form of Y Zeolites with a Hierarchical Porous Structure
Bayguzina,Makhiyanova,Khazipova,Khusnutdinov
, p. 1554 - 1559 (2019/10/14)
tert-Butyl-substituted phenols have been synthesized via the reaction of phenol, o-, m-, and p-cresols with tert-butanol under the action of CBr4-promoted Y-zeolites in the H-form with a hierarchical porous structure.
Hierarchical ZSM-5 nanocrystal aggregates: Seed-induced green synthesis and its application in alkylation of phenol with: Tert -butanol
Chen, Li,Xue, Teng,Wu, Haihong,Wu, Peng
, p. 2751 - 2758 (2018/02/06)
Hierarchical ZSM-5 zeolite aggregates were synthesized in an organic-template-free system via seed-induced crystallization. The obtained samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron mi
A PROCESS FOR THE PREPARATION OF TERTIARY BUTYL PHENOL
-
Page/Page column 7-8, (2018/05/16)
The present invention disclosed a process for the preparation of tertiary butyl phenol by reaction of phenol with tertiary butanol using phosphorus pentoxide as catalyst.
2, 4-di-tert-butylphenol preparation method
-
Paragraph 0030-0034; 0036-0040; 0042-0046; 0048-0053, (2019/01/14)
The invention relates to the field of organic synthesis, in particular to a 2, 4-di-tert-butylphenol preparation method which includes the steps: 1) adding and stirring catalysts and methyl tertiary butyl ether in the presence of a certain pressure and organic solvents; 2) dropwise adding phenol into the step 1), and heating and stirring reaction liquid; 3) cooling the reaction liquid in the step2) to room temperature, filtering the reaction liquid, washing filtrate and vaporizing solvents; 4) rectifying and drying 2, 4-di-tert-butylphenol crude products in the step 3) to obtain 2, 4-di-tert-butylphenol products. The preparation method is mild in reaction condition and high in product selectivity, and the catalysts can be recycled.
Method for preparing hydrocarbyl phenol by catalytic conversion of phenolic compound in presence of molybdenum-based catalyst
-
Paragraph 0040-0041; 0070; 0073; 0079; 0084; 0089; 0100-0107, (2018/04/02)
The invention discloses a method for preparing hydrocarbyl phenol by catalytic conversion of a phenolic compound in the presence of a molybdenum-based catalyst. The method comprises mixing a phenoliccompound, a molybdenum-based catalyst and a reaction solvent, adding the mixture into a sealed reactor, feeding gas into the reactor, heating the mixture to 150-350 DEG C, carrying out stirring for areaction for 0.5-2h, then filtering to remove a solid catalyst and carrying out rotary evaporateion to obtain a liquid product. The phenolic compound has a wide source, a cost is low, product alkyl phenol selectivity is high, an added value is high, alcohol or an alcohol-water mixture is used as a reaction solvent, environmental friendliness is realized, pollution is avoided, any inorganic acids and alkalis are avoided in the reaction process, the common environmental pollution problems in the biomass processing technology are solved, the reaction conditions are mild, the process can be carried out at a low temperature, high-efficiency conversion of the reactants can be realized without consuming hydrogen gas and the method is suitable for large-scale industrial trial production.
Selecting an optimum catalyst for producing para-tert-butylphenol by phenol alkylation with tert-butanol
Terekhov,Zanaveskin,Khadzhiev
, p. 714 - 717 (2017/07/26)
Results of testing various heterogeneous catalysts in the synthesis of p-tert-butylphenol via phenol alkylation with tert-butyl alcohol are presented. It has been shown that all other conditions being equal, zeolite beta produced by the Angarsk catalyst and organic synthesis plant possesses the highest catalytic activity and selectivity for the desired product.
Synthesis and catalytic activity of rhenium carbonyl complexes containing alkyl-substituted tetramethylcyclopentadienyl ligands
Li, Zhan-Wei,Ma, Zhi-Hong,Li, Su-Zhen,Han, Zhan-Gang,Zheng, Xue-Zhong,Lin, Jin
, p. 137 - 144 (2017/02/23)
A series of six alkyl-substituted tetramethylcyclopentadienyl mononuclear metal carbonyl complexes [(η5-C5Me4R)Re(CO)3] [R?=?allyl (1), i-Pr (2), n-butyl (3), t-butyl (4), benzyl (5), CH(CH2)4 (6)] have been synthesized by treating the corresponding ligands (C5Me4R) [R?=?allyl, i-Pr, n-butyl, t-butyl, benzyl, CH(CH2)4] with Re2(CO)10 in refluxing xylene. The six new complexes were characterized by elemental analysis, IR, 1H NMR and 13C NMR spectroscopy. The crystal structures of all six complexes were determined by X-ray crystal diffraction analysis, showing that they have similar molecular structures, being mononuclear carbonyl complexes. In each of these complexes, the Re atom is η5-coordinated to the cyclopentadienyl ring. Complexes 1–5 have significant catalytic activity in Friedel–Crafts reactions of aromatic compounds with alkylation reagents. Compared with traditional catalysts, these mononuclear rhenium carbonyl complexes have obvious advantages such as lower amounts of catalyst, mild reaction conditions and environmentally friendly chemistry.