99395-88-7Relevant articles and documents
Catalytic enantioselective synthesis of β-amino alcohols by nitrene insertion
Zhou, Zijun,Tan, Yuqi,Shen, Xiang,Ivlev, Sergei,Meggers, Eric
, p. 452 - 458 (2020/12/31)
Chiral β-amino alcohols are important building blocks for the synthesis of drugs, natural products, chiral auxiliaries, chiral ligands and chiral organocatalysts. The catalytic asymmetric β-amination of alcohols offers a direct strategy to access this class of molecules. Herein, we report a general intramolecular C(sp3)-H nitrene insertion method for the synthesis of chiral oxazolidin-2-ones as precursors of chiral β-amino alcohols. Specifically, the ring-closing C(sp3)-H amination of N-benzoyloxycarbamates with 2 mol% of a chiral ruthenium catalyst provides cyclic carbamates in up to 99% yield and with up to 99% ee. The method is applicable to benzylic, allylic, and propargylic C-H bonds and can even be applied to completely non-activated C (sp3)-H bonds, although with somewhat reduced yields and stereoselectivities. The obtained cyclic carbamates can subsequently be hydrolyzed to obtain chiral β-amino alcohols. The method is very practical as the catalyst can be easily synthesized on a gram scale and can be recycled after the reaction for further use. The synthetic value of the new method is demonstrated with the asymmetric synthesis of a chiral oxazolidin-2-one as intermediate for the synthesis of the natural product aurantioclavine and chiral β-amino alcohols that are intermediates for the synthesis of chiral amino acids, indane-derived chiral Box-ligands, and the natural products dihydrohamacanthin A and dragmacidin A.[Figure not available: see fulltext.].
Preparation method of oxazolidinone compound
-
Paragraph 0051; 0056-0057, (2021/11/10)
The preparation method comprises the following steps 1): dissolving aromatic amino acid in methanol, dissolving the aromatic amino acid in methanol, heating up to 50 - 60 °C heat preservation 1 - 2h, 2) reducing: adding a catalytic amount of lithium salt in ethanol water as a solvent. 3) Ring-closing: toluene is used as a solvent, a reduction product and diethyl carbonate are added to 100 °C, a sodium methoxide solution is added dropwise, and the product is obtained after completion of the dropwise addition and after-treatment and purification after completion of the normal pressure distillation to the temperature of 100 °C heat preservation. The lithium salt is introduced to participate in the reaction, sodium borohydride is selected as a solvent, sodium borohydride is completely dissolved, and the lithium salt can be free from the compound to improve the reaction activity, so that the use amount of sodium borohydride is reduced to 2 equivalent, and the production cost is remarkably reduced.
Preparation method of (S)-4-phenyl-2-oxazolidinone
-
Paragraph 0022-0023; 0025; 0026-0027; 0029; 0030-0031; 0033, (2021/03/18)
The invention discloses a preparation method for synthesizing (S)-4-phenyl-2-oxazolidinone, and belongs to the technical field of organic synthesis. The preparation method comprises the following steps: reducing N-Boc-L-phenylglycine with a borane reagent to obtain N-Boc-L-phenylglycinol, and carrying out a ring closing reaction under the action of a catalyst to obtain (S)-4-phenyl-2-oxazolidinone. The product reacts with sulfur powder and ammonium sulfide or ammonium polysulfide to obtain (S)-4-phenyl oxazolidine-2-thioketone. The method avoids the use of cytotoxic reagents or solvents, has the advantages of accessible raw materials, simple operation and the like, conforms to green chemistry, and has potential industrial amplification prospects.
Preparation method of S-4-phenyl-2-oxazolidinone
-
Paragraph 0021-0022, (2021/05/01)
The invention discloses a preparation method of S-4-phenyl-2-azolidinone. The preparation method comprises the following steps: reducing a compound 8 by potassium borohydride under acidic conditions to obtain a compound 9, and cyclizing the compound 9 and diethyl carbonate under alkaline conditions to obtain a compound 10, thereby obtaining (s)-4-phenyl-2-azolidinone. The raw materials used in the preparation method are easy to obtain, the reaction conditions are mild, the steps are simple, flammable and explosive reagents are not used, and the preparation method is suitable for large-scale industrial production and high in safety; the reaction yield is higher, and the cost is lower. Wide application prospects are realized.
Chiral separation materials based on derivatives of 6-amino-6-deoxyamylose
Gao, Ya-Ya,Zhang, Yu-Hang,Zhang, Shan,Chen, Wei,Bai, Zheng-Wu
supporting information, p. 899 - 914 (2021/10/07)
In order to develop new type of chiral separation materials, in this study, 6-amino-6-deoxyamylose was used as chiral starting material with which 10 derivatives were synthesized. The amino group in 6-amino-6-deoxyamylose was selectively acylated and then the hydroxyl groups were carbamoylated yielding amylose 6-amido-6-deoxy-2,3-bis(phenylcarbamate)s, which were employed as chiral selectors (CSs) for chiral stationary phases of high-performance liquid chromatography. The resulted 6-amido-6-deoxyamyloses and amylose 6-amido-6-deoxy-2,3-bis(phenylcarbamate)s were characterized by IR, 1H NMR, and elemental analysis. Enantioseparation evaluations indicated that most of the CSs demonstrated a moderate chiral recognition capability. The 6-nonphenyl (6-nonPh) CS of amylose 6-cyclohexylformamido-6-deoxy-2,3-bis(3,5-dimethylphenylcarbamate) showed the highest enantioselectivity towards the tested chiral analytes; the phenyl-heterogeneous (Ph-hetero) CS of amylose 6-(4-methylbenzamido)-6-deoxy-2,3-bis(3,5-dimethylphenylcarbamate) baseline separated the most chiral analytes; the phenyl-homogeneous (Ph-homo) CS of amylose 6-(3,5-dimethylbenzamido)-6-deoxy-2,3-bis(3,5-dimethylphenylcarbamate) also exhibited a good enantioseparation capability among the developed CSs. Regarding Ph-hetero CSs, the enantioselectivity depended on the combination of the substituent at 6-position and that at 2- and 3-positions; as for Ph-homo CSs, the enantioselectivity was related to the substituent at 2-, 3-, and 6-positions; with respect to 6-nonPh CSs, the retention factor of most analytes on the corresponding CSPs was lower than that on Ph-hetero and Ph-homo CSPs in the same mobile phases, indicating π–π interactions did occur during enantioseparation. Although the substituent at 6-position could not provide π–π interactions, the 6-nonPh CSs demonstrated an equivalent or even higher enantioselectivity compared with the Ph-homo and Ph-hetero CSs.
Deconstructing Noncovalent Kelch-like ECH-Associated Protein 1 (Keap1) Inhibitors into Fragments to Reconstruct New Potent Compounds
Pallesen, Jakob S.,Narayanan, Dilip,Tran, Kim T.,Solbak, Sara M. ?.,Marseglia, Giuseppe,S?rensen, Louis M. E.,H?j, Lars J.,Munafò, Federico,Carmona, Rosa M. C.,Garcia, Anthony D.,Desu, Haritha L.,Brambilla, Roberta,Johansen, Tommy N.,Popowicz, Grzegorz M.,Sattler, Michael,Gajhede, Michael,Bach, Anders
, p. 4623 - 4661 (2021/05/07)
Targeting the protein-protein interaction (PPI) between nuclear factor erythroid 2-related factor 2 (Nrf2) and Kelch-like ECH-associated protein 1 (Keap1) is a potential therapeutic strategy to control diseases involving oxidative stress. Here, six classes of known small-molecule Keap1-Nrf2 PPI inhibitors were dissected into 77 fragments in a fragment-based deconstruction reconstruction (FBDR) study and tested in four orthogonal assays. This gave 17 fragment hits of which six were shown by X-ray crystallography to bind in the Keap1 Kelch binding pocket. Two hits were merged into compound 8 with a 220-380-fold stronger affinity (Ki = 16 μM) relative to the parent fragments. Systematic optimization resulted in several novel analogues with Ki values of 0.04-0.5 μM, binding modes determined by X-ray crystallography, and enhanced microsomal stability. This demonstrates how FBDR can be used to find new fragment hits, elucidate important ligand-protein interactions, and identify new potent inhibitors of the Keap1-Nrf2 PPI.
Live-Cell Protein Modification by Boronate-Assisted Hydroxamic Acid Catalysis
Adamson, Christopher,Kajino, Hidetoshi,Kanai, Motomu,Kawashima, Shigehiro A.,Yamatsugu, Kenzo
supporting information, p. 14976 - 14980 (2021/09/29)
Selective methods for introducing protein post-translational modifications (PTMs) within living cells have proven valuable for interrogating their biological function. In contrast to enzymatic methods, abiotic catalysis should offer access to diverse and new-to-nature PTMs. Herein, we report the boronate-assisted hydroxamic acid (BAHA) catalyst system, which comprises a protein ligand, a hydroxamic acid Lewis base, and a diol moiety. In concert with a boronic acid-bearing acyl donor, our catalyst leverages a local molarity effect to promote acyl transfer to a target lysine residue. Our catalyst system employs micromolar reagent concentrations and affords minimal off-target protein reactivity. Critically, BAHA is resistant to glutathione, a metabolite which has hampered many efforts toward abiotic chemistry within living cells. To showcase this methodology, we installed a variety of acyl groups inE. colidihydrofolate reductase expressed within human cells. Our results further establish the well-known boronic acid-diol complexation as abona fidebio-orthogonal reaction with applications in chemical biology and in-cell catalysis.
Efficient Access to Chiral 2-Oxazolidinones via Ni-Catalyzed Asymmetric Hydrogenation: Scope Study, Mechanistic Explanation, and Origin of Enantioselectivity
Dong, Xiu-Qin,Liu, Yuanhua,Wang, Heng,Wang, Minyan,Yang, Xuanliang,Yi, Zhiyuan,Yin, Congcong,Zhang, Xumu
, p. 11153 - 11161 (2020/11/23)
Cheap transition metal Ni-catalyzed asymmetric hydrogenation of 2-oxazolones was successfully developed, which provided an efficient synthetic strategy to prepare various chiral 2-oxazolidinones with 95%-99% yields and 97%->99% ee. The gram-scale hydrogenation could be proceeded well with >99% ee in the presence of low catalyst loading (up to 3350 TON). This Ni-catalyzed hydrogenation protocol demonstrated great synthetic utility, and the chiral 2-oxazolidinone product was easily converted to a variety of other important molecules in good yields and without loss of ee values, such as chiral dihydrothiophene-2(3H)-thione, amino alcohol, oxazoline ligand, and allenamide. Moreover, a series of deuterium labeling experiments, control experiments, and DFT calculations were conducted to illustrate a reasonable catalytic mechanism for this Ni-catalyzed asymmetric hydrogenation, which involved a tautomerization between the enamine and its isomer imine and then went through asymmetric 1,2-addition of Ni(II)-H to the preferred imine.
Asymmetric catalysis with a chiral-at-osmium complex
Wang, Guanghui,Zhou, Zijun,Shen, Xiang,Ivlev, Sergei,Meggers, Eric
supporting information, p. 7714 - 7717 (2020/07/27)
The first example of a chiral osmium catalyst is reported in which the overall chirality originates exclusively from a stereogenic metal center (metal-centered chirality) with all coordinating ligands being achiral. The non-C2-symmetric chiral-at-metal complex contains two cyclometalated 7-methyl-1,7-phenanthrolinium heterocycles which can be described as two chelating pyridylidene remote N-heterocyclic carbene (rNHC) ligands. The octahedral coordination sphere is completed with one CO and one acetonitrile ligand. A monodentate chiral oxazoline ligand is used as a chiral auxiliary ligand to obtain enantiomerically pure chiral-at-osmium complexes (>99?:?1 e.r.). Finally, it is demonstrated that the developed chiral-at-osmium complex is suitable for ring-closing enantioselective C(sp3)-H aminations, including the first example of catalytic enantioselective cyclizations of azidoformates to chiral 2-oxazolidinones.
Synthesis of Chiral 5-Aryl-2-oxazolidinones via Halohydrin Dehalogenase-Catalyzed Enantio- and Regioselective Ring-Opening of Styrene Oxides
Wan, Nanwei,Zhou, Xiaoying,Ma, Ran,Tian, Jiawei,Wang, Huihui,Cui, Baodong,Han, Wenyong,Chen, Yongzheng
, p. 1201 - 1207 (2020/02/05)
An efficient biocatalytic approach for enantio- and regioselective ring-opening of styrene oxides with cyanate was developed by using the halohydrin dehalogenase HheC from Agrobacterium radiobacter AD1, generating the corresponding chiral 5-aryl-2-oxazoli