Welcome to LookChem.com Sign In | Join Free

Details

Home > Chemical Encyclopedia > Chemical Technology > Laboratory Chemical Technology >
 General procedures for the purification of Esters
  • General procedures for the purification of Esters
  • The most common impurities are the corresponding acid and hydroxy compound (Le. alcohol or phenol), and . A liquid ester from a carboxylic acid is washed with 2N sodium carbonate or sodium hydroxide to remove acid material, then shaken with calcium chloride to remove ethyl or methyl alcohols (if it is a methyl or ethyl ester). It is dried with potassium carbonate or magnesium sulfate, and distilled. Fractional distillation then removes residual traces of hydroxy compounds. This method does not apply to esters of inorganic acids (e.g. dimethyl sulfate) which are more readily hydrolysed in aqueous solution when heat is generated in the neutralisation of the excess acid. In such cases, several fractional distillations, preferably under vacuum, are usually sufficient.

    Solid esters are easily crystallisable materials. It is important to note that esters of alcohols must be recrystallised either from non-hydroxylic solvents (e.g. toluene) or from the alcohol from which the ester is derived. Thus s should be crystallised from methanol or methanol/toluene, but not from ethanol, n-butanol or other alcohols, in order to avoid alcohol exchange and contamination of the ester with a second ester. Useful solvents for crystallisation are the corresponding alcohols or aqueous alcohols, toluene, toluene/petroleum ether, and chloroform (ethanol-free)/toluene. Esters of carboxylic acid derived from phenols are more difficult to hydrolyse and exchange, hence any alcoholic solvent can be used freely. Sulfonic acid esters of phenols are even more resistant to hydrolysis: they can safely be crystallised not only from the above solvents but also from acetic acid, aqueous acetic acid or boiling n-butanol.

    Fully esterified phosphoric acid and phosphonic acids differ only in detail from the above mentioned esters. Their major contaminants are alcohols or phenols, phosphoric or phosphonic acids (from hydrolysis), and (occasionally) basic material, such as pyridine, which is used in their preparation. Water-insoluble esters are washed thoroughly and successively with dilute acid (e.g. 0.2N sulfuric acid), water, 0.2N sodium hydroxide and water. After drying with calcium chloride they are fractionally distilled. Water-soluble esters should first be dissolved in a suitable organic solvent and, in the washing process, water should be replaced by saturated aqueous sodium chloride. Some esters (e.g. phosphate and phosphonate esters) can be further purified through their uranyl adducts (vide supra). Traces of water or hydroxy compounds can be removed by percolation through, or shaking with, activated alumina (about 100 g/L of liquid solution), followed by filtration and fractional distillation in a vacuum. For high molecular weight esters (which cannot be distilled without some decomposition) it is advisable to carry out distillation at as low a pressure as possible. Solid esters can be crystallised from toluene or petroleum ether. Alcohols can be used for recrystallising phosphoric or phosphonic esters of phenols.


    Prev:No record
    Next:No record
  • Back】【Close 】【Print】【Add to favorite
Periodic Table
    Hot Products