Published on Web 11/09/2007
A Switchable Palladium-Complexed Molecular Shuttle and Its
Metastable Positional Isomers
James D. Crowley,† David A. Leigh,*,† Paul J. Lusby,† Roy T. McBurney,†
Laure-Emmanuelle Perret-Aebi,† Christiane Petzold,† Alexandra M. Z. Slawin,‡ and
Mark D. Symes†
Contribution from the School of Chemistry, UniVersity of Edinburgh, The King’s Buildings,
West Mains Road, Edinburgh EH9 3JJ, United Kingdom, and the School of Chemistry,
UniVersity of St. Andrews, Purdie Building, St. Andrews, Fife KY16 9ST, United Kingdom
Received August 31, 2007; E-mail: David.Leigh@ed.ac.uk
Abstract: We report the design, synthesis, characterization, and operation of a [2]rotaxane in which a
palladium-complexed macrocycle can be translocated between 4-dimethylaminopyridine and pyridine
monodentate ligand sites via reversible protonation, the metal remaining coordinated to the macrocycle
throughout. The substitution pattern of the ligands and the kinetic stability of the Pd-N bond means that
changing the chemical state of the thread does not automatically cause a change in the macrocycle’s
position in the absence of an additional input (heat and/or coordinating solvent/anion). Accordingly, under
ambient conditions any of the four sets of protonated and neutral, stable, and metastable co-conformers
of the [2]rotaxane can be selected, manipulated, isolated, and characterized.
Introduction
a simple-to-assemble-and-operate [2]rotaxane in which a pal-
ladium-complexed macrocycle can be translocated between
Despite the success and influence of the redox-responsive
Cu(I)/Cu(II) catenane and rotaxane systems developed in
Strasbourg,1,2 there are no other examples of stimuli-switchable
molecular shuttles3 based on the manipulation of metal-ligand
interactions between the components.4,5 This lack of switchable
metal coordination motifs for interlocked molecules may be set
to change, however, following the recognition of the need to
vary the kinetics of binding events and transportation pathways
(e.g., ratcheting and escapement6) in any mechanical molecular
machine more sophisticated than a switch,7 and the crucial role
played by metastability in the functioning of rotaxanes currently
being investigated for molecular electronics.8 Here we describe
4-dimethylaminopyridine (DMAP) and pyridine (Py) ligand sites
via reversible protonation (the metal remaining coordinated to
(3) (a) Bissell, R. A.; Co´rdova, E.; Kaifer, A. E.; Stoddart, J. F. Nature 1994,
369, 133-136. For other examples of pH-responsive molecular shuttles
see: (b) Mart´ınez-D´ıaz, M.-V.; Spencer, N.; Stoddart, J. F. Angew. Chem.,
Int. Ed. Engl. 1997, 36, 1904-1907. (c) Ashton, P. R.; Ballardini, R.;
Balzani, V.; Baxter, I.; Credi, A.; Fyfe, M. C. T.; Gandolfi, M. T.; Go´mez-
Lo´pez, M.; Mart´ınez-D´ıaz, M.-V.; Piersanti, A.; Spencer, N.; Stoddart, J.
F.; Venturi, M.; White, A. J. P.; Williams, D. J. J. Am. Chem. Soc. 1998,
120, 11932-11942. (d) Elizarov, A. M.; Chiu, S.-H.; Stoddart, J. F. J.
Org. Chem. 2002, 67, 9175-9181. (e) Badjic´, J. D.; Balzani, V.; Credi,
A.; Silvi, S.; Stoddart, J. F. Science 2004, 303, 1845-1849. (f) Keaveney,
C. M.; Leigh, D. A. Angew. Chem., Int. Ed. 2004, 43, 1222-1224. (g)
Garaude´e, S.; Silvi, S.; Venturi, M.; Credi, A.; Flood, A. H.; Stoddart, J.
F. ChemPhysChem. 2005, 6, 2145-2152. (h) Badjic´, J. D.; Ronconi, C.
M.; Stoddart, J. F.; Balzani, V.; Silvi, S.; Credi, A. J. Am. Chem. Soc.
2006, 128, 1489-1499. (i) Tokunaga, Y.; Nakamura, T.; Yoshioka, M.;
Shimomura, Y. Tetrahedron Lett. 2006, 47, 5901-5904. (j) Leigh, D. A.;
Thomson, A. R. Org. Lett. 2006, 8, 5377-5379.
(4) For ruthenium-coordinated catenanes and rotaxanes which undergo pho-
toinduced decomplexation of the components, see: (a) Mobian, P.; Kern,
J.-M.; Sauvage, J.-P. Angew. Chem., Int. Ed. 2004, 43, 2392-2395. (b)
Collin, J.-P.; Jouvenot, D.; Koizumi, M.; Sauvage, J.-P. Eur. J. Inorg. Chem.
2005, 1850-1855. For other types of rotaxanes and catenanes which feature
intercomponent metal-ligand coordination, see: (c) Hutin, M.; Schalley,
C. A.; Bernardinelli, G.; Nitschke, J. R. Chem.sEur. J. 2006, 12, 4069-
4076. (d) Blight, B. A.; Wisner, J. A.; Jennings, M. C. Chem. Commun.
2006, 4593-4595. (e) Blight, B. A.; Wisner, J. A.; Jennings, M. C. Angew.
Chem., Int. Ed. 2007, 46, 2835-2838.
† University of Edinburgh.
‡ University of St Andrews.
(1) For macrocycle translocation in Cu(I)/Cu(II)-coordinated rotaxanes, see:
(a) Gavin˜a, P.; Sauvage, J.-P. Tetrahedron Lett. 1997, 38, 3521-3524. (b)
Armaroli, N.; Balzani, V.; Collin, J.-P.; Gavin˜a, P.; Sauvage, J.-P.; Ventura,
B. J. Am. Chem. Soc. 1999, 121, 4397-4408. (c) Durola, F.; Sauvage,
J.-P. Angew. Chem., Int. Ed. 2007, 46, 3537-3540. For macrocycle
translocation in Cu(I)/Cu(II)-coordinated catenanes, see: (d) Livoreil, A.;
Dietrich-Buchecker, C. O.; Sauvage, J.-P. J. Am. Chem. Soc. 1994, 116,
9399-9400. (e) Ca´rdenas, D. J.; Livoreil, A.; Sauvage, J.-P. J. Am. Chem.
Soc. 1996, 118, 11980-11981. (f) Livoreil, A.; Sauvage, J.-P.; Armaroli,
N.; Balzani, V.; Flamigni, L.; Ventura, B. J. Am. Chem. Soc. 1997, 119,
12114-12124. For macrocycle rotation in Cu(I)/Cu(II)-coordinated rotax-
anes, see: (g) Raehm, L.; Kern, J.-M.; Sauvage, J.-P. Chem.sEur. J. 1999,
5, 3310-3317. (h) Weber, N.; Hamann, C.; Kern, J.-M.; Sauvage, J.-P.
Inorg. Chem. 2003, 42, 6780-6792. (i) Poleschak, I.; Kern, J.-M.; Sauvage,
J.-P. Chem. Commun. 2004, 474-476. (j) Le´tinois-Halbes, U.; Hanss, D.;
Beierle, J. M.; Collin, J.-P.; Sauvage, J.-P. Org. Lett. 2005, 7, 5753-5756.
For a recent review of transition metal complexed molecular machines,
see: (k) Bonnet, S.; Collin, J.-P.; Koizumi, M.; Mobian, P.; Sauvage, J.-P.
AdV. Mater. 2006, 18, 1239-1250.
(5) For examples of rotaxanes and catenanes which utilize transition metal
ions to switch on/off other types of intercomponent interaction, see: (a)
Korybut-Daszkiewicz, B.; Wie¸ckowska, A.; Bilewicz, R.; Domagaa˜, S.;
Woz´niak, K. Angew. Chem., Int. Ed. 2004, 43, 1668-1672. (b) Jiang, L.;
Okano, J.; Orita, A.; Otera, J. Angew. Chem., Int. Ed. 2004, 43, 2121-
2124. (c) Leigh, D. A.; Lusby, P. J.; Slawin, A. M. Z.; Walker, D. B. Angew.
Chem., Int. Ed. 2005, 44, 4557-4564. (d) Leigh, D. A.; Lusby, P. J.; Slawin,
A. M. Z.; Walker, D. B. Chem. Commun. 2005, 4919-4921. (e) Marlin,
D. S.; Gonza´lez Cabrera, D.; Leigh, D. A.; Slawin, A. M. Z. Angew. Chem.,
Int. Ed. 2006, 45, 77-83. (f) Marlin, D. S.; Gonza´lez Cabrera, D.; Leigh,
D. A.; Slawin, A. M. Z. Angew. Chem., Int. Ed. 2006, 45, 1385-1390.
(6) Chatterjee, M. N.; Kay, E. R.; Leigh, D. A. J. Am. Chem. Soc. 2006, 128,
4058-4073.
(2) For contraction/stretching in a rotaxane dimer through Cu(I)-Zn(II)
exchange, see: (a) Jime´nez, M. C.; Dietrich-Buchecker, C.; Sauvage, J.-P.
Angew. Chem., Int. Ed. 2000, 39, 3284-3287. (b) Jime´nez-Molero, M.
C.; Dietrich-Buchecker, C.; Sauvage, J.-P. Chem.sEur. J. 2002, 8, 1456-
1466.
(7) (a) Kay, E. R.; Leigh, D. A. Nature 2006, 440, 286-287. (b) Kay, E. R.;
Leigh, D. A.; Zerbetto, F. Angew. Chem., Int. Ed. 2007, 46, 72-191.
9
10.1021/ja076570h CCC: $37.00 © 2007 American Chemical Society
J. AM. CHEM. SOC. 2007, 129, 15085-15090
15085