C O M M U N I C A T I O N S
Scheme 1. Construction of Carbocyclic Core Intermediate 15a
Scheme 2. Completion of the Synthesis of Carbaplatensimycin
(3)a
a Reagents and conditions: (a) KHMDS (0.5 M in toluene, 2.0 equiv),
MeI (8.0 equiv), THF:HMPA (5:1), -78f-10 °C, 1 h, 92%; (b) KHMDS
(0.5 M in toluene, 4.0 equiv), allyl iodide (8.0 equiv), THF:HMPA (5:1),
-78f-10 °C, 1 h, 87%; (c) Grubbs gen. II (10 mol %), 17 (5.0 equiv),
benzene, 80 °C, 1 h, 85%; (d) Me3NO (6.0 equiv), THF, 65 °C, 2 h, 85%;
(e) NaClO2 (5.0 equiv), NaH2PO4 (7.0 equiv), 2,3-dimethylbutene (10
equiv), t-BuOH:H2O (1:1), 25 °C, 1 h, 95%; (f) 20 (1.0 equiv), 21 (3.0
equiv), HATU (4.0 equiv), Et3N (6.0 equiv), DMF, 25 °C, 20 h, 80%; (g)
2 N aq. LiOH (30 equiv), THF, 45 °C, 6 h; then 2 N aq. HCl (60 equiv),
THF, 45 °C, 24 h, 82% overall yield.
a Reagents and conditions: (a) TMSCN (1.5 equiv), Et3N (0.5 equiv),
CH2Cl2, 25 °C, 1 h; (b) TBAF (1.0 M in THF, 1.5 equiv), THF, 25 °C, 1
h; (c) ethyl vinyl ether (excess), PPTS (0.5 equiv), CH2Cl2, 25 °C, 12 h,
80% over 3 steps; (d) KHMDS (0.5 M in toluene, 1.5 equiv), THF, -78 f
25 °C, 0.5 h, 70%; (e) CH3PPh3Br (2.5 equiv), KHMDS (0.5 M in toluene,
2.0 equiv), THF, -78 f 0 °C, 1 h, 92%; (f) Red-Al (3.5 M in toluene, 5.0
equiv), THF, -20 f 25 °C, 6 h, 90%; (g) SmI2 (0.1 M in THF, 2.5 equiv),
THF:t-BuOH (10:1), -10 f 25 °C, 2 h, 92%; (h) NaBH4 (1.5 equiv), THF:
CH3OH (2:1), 0 f 25 °C, 30 min, 99%; (i) CS2 (3.0 equiv), KHMDS (0.5
M in toluene, 3.0 equiv), THF, -78 f 25 °C, 1 h; then MeI (3.0 equiv),
THF, 25 °C, 1 h, 99%; (j) n-Bu3SnH (1.5 equiv), AIBN (0.75 equiv),
Table 1. Minimum Inhibitory Concentration (MIC) Values (µg
mL-1) of 1, 2, and 3 against a Variety of Bacterial Strainsa
1
2
3
t
benzene, 80 °C, 0.5 h, 65%; (k) OsO4 (2.5 wt % in BuOH, 5 mol %),
NMO (50 wt % in H2O, 2.0 equiv), acetone:H2O (8:1), 0 °C, 4 h, 80%; (l)
NaIO4 (2.0 equiv), THF:H2O (1:1), 25 °C, 1 h, 92%.
MRSA
VREF
Staphylococcus aureus
Staphylococcus epidermidis
Bacillus cereus
0.2-0.4
0.4-0.8
0.2-0.6
<0.2
2.2-4.4
<0.2
1.3-1.8
1.3-1.8
1.1-2.2
0.5-1.1
8.8-11.1
3.3-4.4
1.1-2.2
1.1-2.2
0.4-1.1
0.2-0.5
17.6-22.0
1.1-2.2
analogue (3) against a number of Gram-positive bacteria lie in the
same order of magnitude as those of the natural product (1) and
adamantaplatensimycin (2). For example, the MIC values for 1, 2,
and 3 against MRSA were found to be 0.2-0.4, 1.3-1.8, and 1.1-
2.2 µg mL-1, respectively, while the corresponding values against
VREF for these compounds are 0.4-0.8, 1.3-1.8, and 1.1-2.2
µg mL-1. However, the similar potency of carbaplatensimycin (3)
against these bacteria to that of adamantaplatensimycin (2) indicates
the important contribution of the ether oxygen of the natural product
to its antibacterial activity. All three platensimycins (1-3) were
tested and found inactive (MIC > 88 µg mL-1) against the
following Gram-negative bacterial strains: E. coli, B. cepacia, S.
typhimurium, P. aeruginosa.
The reported synthesis of carbaplatensimycin (3) adds a new,
bioactive platensimycin analogue to this promising class of antibiot-
ics. At the same time, these investigations confirmed the positive
role that the ether oxygen plays in the biological activity of
platensimycin. This information may prove useful in the rational
design of new antibacterial agents based on the platensimycin lead
structure.
Lysteria monocytogenes
a The antibacterial activity was determined by National Committee for
Clinical Laboratory Standards (NCCLS) broth microdilution methods.
Inocula of MRSA (ATCC 33591), VREF (ATCC 51575), S. aureus (ATCC
29213), S. epidermidis (ATCC 35989), B. cereus (ATCC 11778), and L.
monocytogenes (ATCC 10115) were prepared and treated as described in
the Supporting Information.
Supporting Information Available: Complete ref 1, experimental
procedures, and compound characterization (PDF, CIF). This material
References
(1) (a) Wang, J.; et al. Nature 2006, 441, 358. (b) Singh, S. B.; Jayasuriya,
H.; Ondeyka, J. G.; Herath, K. B.; Zhang, C.; Zink, D. L.; Tsou, N. N.;
Ball, R. G.; Basilio, A.; Genilloud, O.; Diez, M. T.; Vicente, F.; Pelaez,
F.; Young, K.; Wang, J. J. Am. Chem. Soc. 2006, 128, 11916.
(2) (a) Nicolaou, K. C.; Li, A.; Edmonds, D. J. Angew. Chem., Int. Ed. 2006,
45, 7086. (b) Nicolaou, K. C.; Edmonds, D. J.; Li, A.; Tria, G. S. Angew.
Chem., Int. Ed. 2007, 46, 4016. (c) Zou, Y.; Chen, C.-H.; Taylor, C. D.;
Foxman, B. M.; Snider, B. B. Org. Lett. 2007, 9, 1825. (d) Nicolaou, K.
C.; Tang, Y.; Wang, J. Chem. Commun. 2007, 1922. (e) Kaliappan, K.
P.; Ravikumar, V. Org. Lett. 2007, 9, 2417. (f) Li, P.; Payette, J. N.;
Yamamoto, H. J. Am. Chem. Soc. 2007, 129, 9534.
Acknowledgment. We thank Drs. D. H. Huang, G. Siuzak, and
R. Chadha for NMR spectroscopic, mass spectrometric, and for
X-ray crystallographic assistance, respectively. This material is
based upon work supported by the National Science Foundation
under Grant No. 0603217, as well as the Skaggs Institute for
Chemical Biology, and fellowships from Bristol-Myers Squibb (to
A.L.), Schering AG (to A.F.S.), and the Spanish Ministry of Science
and Education (MEC/Fulbright, to A.M.).
(3) Nicolaou, K. C.; Lister, T.; Denton, R. M.; Montero, A.; Edmonds, D. J.
Angew. Chem., Int. Ed. 2007, 46, 4712.
(4) Dai, M.; Danishefsky, S. J. J. Am. Chem. Soc. 2007, 129, 3498.
(5) Barton, D. H. R.; McCombie, S. W. J. Chem. Soc., Perkin Trans. 1 1975,
1571.
(6) (a) Njardarson, J. T.; Biswas, K.; Danishefsky S. J. Chem. Commun. 2002,
2759. (b) Morrill, C.; Grubbs, R. H. J. Org. Chem. 2003, 68, 6031.
JA076126E
9
J. AM. CHEM. SOC. VOL. 129, NO. 48, 2007 14851