construction of multicomponent metal-containing systems for
vectorial electron and energy transfer. However, the luminescent
properties of tpy-based ruthenium(II) complexes are generally
poor, and [Ru(tpy)2]2+ has an excited-state lifetime of only 0.25
ns at room temperature,5 which has limited their use in many
applications. Therefore, the development of novel tridentate
nitrogen-containing ligands that result in highly luminescent
bistridentate ruthenium(II) complexes with long excited-state
lifetimes would considerably expand the use of this class of
complexes in many research fields. Along these lines, we
recently reported the synthesis of 2,6-di(quinolin-8-yl)pyridine
Synthesis and Characterization of
2,6-Di(quinolin-8-yl)pyridines. New Ligands for
Bistridentate RuII Complexes with Microsecond
Luminescent Lifetimes
Michael Ja¨ger,† Lars Eriksson,‡ Jonas Bergquist,§ and
Olof Johansson*,†
Department of Photochemistry and Molecular Science, Uppsala
UniVersity, Box 523, 751 20 Uppsala, Sweden, Department of
Physical, Inorganic and Structural Chemistry, Stockholm
UniVersity, 106 91 Stockholm, Sweden, and Department of
Physical and Analytical Chemistry, Uppsala UniVersity,
Box 599, 751 24 Uppsala, Sweden
(1) and the corresponding ruthenium(II) complex [Ru(1)2]2+
,
which has a remarkable 3 µs excited-state lifetime at room
temperature.6 The tridentate ligand provides a larger bite angle
than tpy resulting in an increase in the ligand field splitting.
Consequently, the normally rapid activated decay of the metal-
to-ligand charge transfer (MLCT) state via the metal-centered
(MC) state in [Ru(tpy)2]2+ complexes is slowed down in [Ru-
(1)2]2+ resulting in favorable properties.
ReceiVed July 13, 2007
To have readily accessible ligands for future preparation of
linear multiunit assemblies based on the RuII bistridentate motif,
we were interested in developing synthetic routes to substituted
2,6-di(quinolin-8-yl)pyridyl ligands. Herein, we present the
synthesis of a range of functionalized 2,6-di(quinolin-8-yl)-
pyridyl ligands prepared via the Pd-catalyzed coupling strategy
and via a one-step ring-forming methodology generating the
central pyridine ring.7
2,6-Di(quinolin-8-yl)pyridines. Our initial strategy toward
2,6-di(quinolin-8-yl)pyridines was based on the Stille-type
carbon-carbon bond-forming reaction which has previously
been widely used for the preparation of functionalized oligopy-
ridyl ligands.8 Reacting 8-(tri-n-butyltin)quinoline9 and 2,6-
dibromopyridine with 5 mol % of Pd(PPh3)4 using different
conditions (e.g., refluxing toluene, THF at 140 °C using
microwave heating) resulted in low yields, less than 30%, and
various byproducts. Instead, we focused on the Suzuki-Miyaura
The synthesis of 4-substituted and 4-aryl-substituted 2,6-di-
(quinolin-8-yl)pyridines is described. The tridentate ligands
were prepared via a palladium-catalyzed Suzuki-Miyaura
cross-coupling reaction or via a one-step ring-forming
reaction generating the central pyridine ring. X-ray crystal
1
structures and H NMR shifts are discussed and compared
to the corresponding data for a RuII bistridentate complex.
Intramolecular stacking of two quinoline units in the RuII
complex is suggested by 1H NMR data and also observed in
the X-ray structure.
(3) (a) Ziessel, R.; Hissler, M.; El-ghayoury, A.; Harriman, A. Coord.
Chem. ReV. 1998, 178-180, 1251-1298. (b) Barigelletti, F.; Flamigni, L.
Chem. Soc. ReV. 2000, 29, 1-12. (c) Amini, A.; Bates, K.; Benniston, A.
C.; Lawrie, D. J.; Soubeyrand-Lenoir, E. Tetrahedron Lett. 2003, 44, 8245-
8247. (d) Benniston, A. C.; Harriman, A.; Li, P.; Patel, P. V.; Sams, C. A.
J. Org. Chem. 2006, 71, 3481-3493.
(4) (a) Andres, P. R.; Schubert, U. S. AdV. Mater. 2004, 16, 1043-
1068. (b) Schubert, U. S.; Hofmeier, H.; Newkome, G. R. Modern
Terpyridine Chemistry; Wiley-VCH: Weinheim, 2006; pp 131-170.
(5) Winkler, J. R.; Netzel, T. L.; Creutz, C.; Sutin, N. J. Am. Chem.
Soc. 1987, 109, 2381-2392.
(6) Abrahamsson, M.; Ja¨ger, M.; O¨ sterman, T.; Eriksson, L.; Persson,
P.; Becker, H.-C.; Johansson, O.; Hammarstro¨m, L. J. Am. Chem. Soc. 2006,
128, 12616-12617.
(7) (a) Vaduvescu, S.; Potvin, P. G. Inorg. Chem. 2002, 41, 4081-4083.
(b) Smith, C. B.; Raston, C. L.; Sobolev, A. N. Green Chem. 2005, 7, 650-
654. (c) Wang, J.; Hanan, G. S. Synlett 2005, 1251-1254. (d) Hwang, S.-
H.; Moorefield, C. N.; Wang, P.; Fronczek, F. R.; Courtney, B. H.;
Newkome, G. R. Dalton Trans. 2006, 3518-3522. (e) Winter, A.; van den
Berg, A. M. J.; Hoogenboom, R.; Kickelbick, G.; Schubert, U. S. Synthesis
2006, 2873-2878.
Photoactive polypyridyl ruthenium(II) complexes based on
tridentate nitrogen-containing heterocycles such as 2,2′:6′,2′′-
terpyridine (tpy) continue to attract wide interest1 for their
possible use in, e.g., artificial photosynthetic systems,2 in
molecular photonic devices,3 and in metallo-supramolecular
polymers.4 Due to the symmetry of the 4′-substituted 2,2′:6′,2′′-
terpyridines, the resulting [Ru(tpy)2]2+ complexes are achiral,
which makes these ligands ideal building blocks for the
† Department of Photochemistry and Molecular Science, Uppsala University.
‡ Department of Physical, Inorganic and Structural Chemistry, Stockholm
University.
§ Department of Physical and Analytical Chemistry, Uppsala University.
(1) (a) Sauvage, J.-P.; Collin, J.-P.; Chambron, J.-C.; Guillerez, S.;
Coudret, C.; Balzani, V.; Barigelletti, F.; De Cola, L.; Flamigni, L. Chem.
ReV. 1994, 94, 993-1019. (b) Medlycott, E. A.; Hanan, G. S. Chem. Soc.
ReV. 2005, 34, 133-142. (c) Medlycott, E. A.; Hanan, G. S. Coord. Chem.
ReV. 2006, 250, 1763-1782.
(8) (a) Hanan, G. S.; Lehn, J.-M.; Kyritsakas, N.; Fischer, J. J. Chem.
Soc., Chem. Commun. 1995, 765-766. (b) Lehmann, U.; Henze, O.;
Schlu¨ter, A. D. Chem. Eur. J. 1999, 5, 854-859. (c) Fallahpour, R.-A.;
Neuburger, M.; Zehnder, M. New J. Chem. 1999, 53-61. (d) Fallahpour,
R.-A. Synthesis 2000, 1138-1142. (e) Heller, M.; Schubert, U. S. Synlett
2002, 751-754.
(2) (a) Baranoff, E.; Collin, J.-P.; Flamigni, L.; Sauvage, J.-P. Chem.
Soc. ReV. 2004, 33, 147-155, and references cited therein. (b) Laine´, P.;
Bedioui, F.; Amouyal, E.; Albin, V.; Berruyer-Penaud, F. Chem. Eur. J.
2002, 8, 3162-3176. (c) Laine´, P.; Bedioui, F.; Ochsenbein, P.; Marvaud,
V.; Bonin, M.; Amouyal, E. J. Am. Chem. Soc. 2002, 124, 1364-1377. (d)
Borgstro¨m, M.; Ott, S.; Lomoth, R.; Bergquist, J.; Hammarstro¨m, L.;
Johansson, O. Inorg. Chem. 2006, 45, 4820-4829.
(9) DiMauro, E. F.; Mamai, A.; Kozlowski, M. C. Organometallics 2003,
22, 850-855.
10.1021/jo7015373 CCC: $37.00 © 2007 American Chemical Society
Published on Web 11/15/2007
J. Org. Chem. 2007, 72, 10227-10230
10227