The high reactivity of the disulfide bridge is a critical
consideration in designing synthetic routes to ETP natural
products. The disulfide bridge is known to be extremely
labile under reductive, basic, and strongly acidic conditions.1,4i
Accordingly, we plan to install the disulfide bridge at a late
stage in the synthesis of cyclotryptophan-containing ETPs
from precursors such as dioxopiperazine diacetate 4 (Scheme
1).5,6 Most ETP natural products of this type contain a
place at carbons R or δ to the hydroxyl group.8,9 Some
transformations of radicals translocated to the â-carbon of
an alcohol derivative have been documented; however,
oxidation of such translocated radicals apparently has not
been reported previously.10
Our investigation commenced with the coupling of 3-hy-
droxyproline derivative 611 and acetylglycolic acid 7 (Scheme
2). After hydrolytic cleavage of the acetate of diamide 8,
Scheme 1
Scheme 2
hydroxyl substituent adjacent to the disulfide bridge (e.g., 1
and 2). Thus, we hoped to engage this substituent to direct
selective, late-stage oxidation of the adjacent angular carbon
of a hexahydropyrrolo[1,2-a]pyrazine-1,4-dione fragment.
The sequence we ultimately developed employs a silyl
group on the secondary alcohol to initiate a radical chain
oxidation reaction (3 f 4, Scheme 1).7 The (bromomethyl)-
dimethylsilyl-protecting/radical-translocating group was cho-
sen because it should be possible to introduce it into complex
molecules under mild conditions, and the resulting trimeth-
ylsiloxy product should be easily transformed to the parent
alcohol. Radical-promoted C-H bond oxidation is appreci-
ated as a technique for remote functionalization of alcohol
derivatives; however, these directed oxidations typically take
Parikh-Doering oxidation12 and attendant cyclization gave
a mixture of dioxopiperazines 10a and 10b (12:1 ratio, 64%
yield), from which the crystalline epimer 10a was isolated
in 59% overall yield from aminoamide 6. After acetylating
the hydroxyl group of 10a, the TBS group was removed at
(4) (a) Trown, P. W. Biochem. Biophys. Res. Commun. 1968, 33, 402-
407. (b) Hino, T.; Sato, T. Tetrahedron Lett. 1971, 12, 3127-3129. (c)
O¨ hler, E.; Poisel, H.; Tataruch, F.; Schmidt, U. Chem. Ber. 1972, 105, 635-
641. (d) O¨ hler, E.; Tataruch, F.; Schmidt, U. Chem. Ber. 1973, 106, 165-
176. (e) Yoshimura, J.; Nakamura, H.; Matsunari, K.; Sugiyama, Y. Chem.
Lett. 1974, 559-560. (f) Kishi, Y.; Fukuyama, T.; Nakatsuka, S. J. Am.
Chem. Soc. 1973, 95, 6490-6492. (g) Kishi, Y.; Fukuyama, T.; Nakatsuka,
S. J. Am. Chem. Soc. 1973, 95, 6492-6493. (h) Kishi, Y.; Nakatsuka, S.;
Fukuyama, T.; Havel, M. J. Am. Chem. Soc. 1973, 95, 6493-6495. (i)
Fukuyama, T.; Nakatsuka, S.; Kishi, Y. Tetrahedron 1981, 37, 2045-2078.
(j) Strunz, G. M.; Kakushima, M. Experientia 1974, 30, 719-720. (k)
Ottenheijm, H. C. J.; Herscheid, J. D. M.; Kerkhoff, G. P. C.; Spande, T.
F. J. Org. Chem. 1976, 41, 3433-3438. (l) Herscheid, J. D. M.; Nivard, R.
J. F.; Tijhuis, M. W.; Ottenheijm, H. C. J. J. Org. Chem. 1980, 45, 1885-
1888. (m) Williams, R. M.; Rastetter, W. H. J. Org. Chem. 1980, 45, 2625-
2631. (n) Srinivasan, A.; Kolar, A. J.; Olsen, R. K. J. Heterocycl. Chem.
1981, 18, 1545-1548. (o) Shimazaki, N.; Shima, I.; Hemmi, K.; Tsurumi,
Y.; Hashimoto, M. Chem. Pharm. Bull. 1987, 35, 3527-3530. (p) Jiang,
H.; Newcombe, N.; Sutton, P.; Lin, Q. H.; Mu¨llbacher, A.; Waring, P. Aust.
J. Chem. 1993, 46, 1743-1754. (q) Wu, Z.; Williams, L. J.; Danishefsky,
S. J. Angew. Chem., Int. Ed. 2000, 39, 3866-3868. (r) Aliev, A. E.; Hilton,
S. T.; Motherwell, W. B.; Selwood, D. L. Tetrahedron Lett. 2006, 47, 2387-
2390.
(5) For synthetic studies toward cyclotryptophan-containing ETPs by
other groups, see: (a) Crich, D.; Fredette, E.; Flosi, W. J. Heterocycles
1998, 48, 545-547. (b) Yamada, F.; Goto, A.; Somei, M. Heterocycles
2000, 53, 1255-1258.
(6) For the recent total synthesis of a related, structurally simpler
cyclotryptophan alkaloid, see: Overman, L. E.; Shin, Y. Org. Lett. 2007,
9, 339-341.
(7) For an early example of 1,5-radical translocation from a protecting
group, see: Curran, D. P.; Kim, D.; Liu, H. T.; Shen, W. J. Am. Chem.
Soc. 1988, 110, 5900-5902.
(8) For examples of C-H bond oxidation R to oxygen of alcohol
derivatives, see: (a) Lewin, A. H.; Dinwoodie, A. H.; Cohen, T. Tetrahedron
1966, 22, 1527-1537. (b) Curran, D. P.; Yu, H. Synthesis 1992, 123-127.
(c) Han, G.; McIntosh, M. C.; Weinreb, S. M. Tetrahedron Lett. 1994, 35,
5813-5816.
(9) For examples of C-H bond oxidation δ to oxygen of alcohol
derivatives, see: (a) Barton, D. H. R.; Beaton, J. M.; Geller, L. E.; Pechet,
M. M. J. Am. Chem. Soc. 1960, 82, 2640-2641. For recent reviews, see:
(b) Majetich, G.; Wheless, K. Tetrahedron 1995, 51, 7095-7129. (c) Reese,
P. B. Steroids 2001, 66, 481-497. (d) Togo, H.; Katohgi, M. Synlett 2001,
565-581. (e) Cˇ ekovic´, Zˇ. Tetrahedron 2003, 59, 8073-8090.
(10) Intramolecular hydrogen atom abstraction â to a protected alcohol,
followed by C-C bond formation or trapping with hydrogen has been
described; see: (a) Brunckova, J.; Crich, D.; Yao, Q. Tetrahedron Lett.
1994, 35, 6619-6622. (b) Yamazaki, N.; Eichenberger, E.; Curran, D. P.
Tetrahedron Lett. 1994, 35, 6623-6626. (c) Curran, D. P.; Xu, J. J. Am.
Chem. Soc. 1996, 118, 3142-3147. (d) Moenius, T.; Andres, H.; Acemoglu,
M.; Kohler, B.; Schnelli, P.; Zueger, C. J. Labelled Compd. Radiopharm.
2000, 43, 113-120. (e) Sukeda, M.; Matsuda, A.; Shuto, S. Tetrahedron
2005, 61, 7865-7873. (f) Sakaguchi, N.; Hirano, S.; Matsuda, A.; Shuto,
S. Org. Lett. 2006, 8, 3291-3294.
(11) Synthesis of 3-hydroxyproline derivative 6 is described in the
Supporting Information.
(12) Parikh, J. R.; Doering, W. E. J. Am. Chem. Soc. 1967, 89, 5505-
5507.
5268
Org. Lett., Vol. 9, No. 25, 2007