6302 Journal of Medicinal Chemistry, 2007, Vol. 50, No. 25
Letters
management of cancer therapy. Int. J. Radiat. Biol. 2006, 82, 699–
757.
(2) (a) Giaccia, A.; Siim, B. G.; Johnson, R. S. HIF-1 as a target for drug
development. Nat. ReV. Drug DiscoVery 2003, 2, 803–811. (b)
Semenza, G. L. Targeting HIF-1 for cancer therapy. Nat. ReV. Cancer
2003, 3, 721–732.
vinigrol, an architecturally novel diterpenoid with potent platelet
aggregation inhibitory and antihypertensive properties. 1. Application
of anionic sigmatropy to construction of the cctalin substructure. J.
Org. Chem. 2003, 68, 6096–6107.
(16) (a) Chanu, A.; Safir, I.; Basak, R.; Chiaroni, A.; Arseniyadis, S.
Enantioselective total synthesis of 1-epi-pathylactone A. Org. Lett.
2007, 9, 1351–1354. (b) Lipshutz, B. H.; Pollart, D.; Monforte, J.;
Kotsuki, H. Palladium(II)-catalyzed acetal/ketal hydrolysis/exchange
reactions. Tetrahedron Lett. 1985, 26, 705–708.
(17) (a) Greene, T. W.; Wuts, P. G. M. ProtectiVe Groups in Organic
Synthesis, 2nd ed.; Wiley: New York, 1991; p 473. (b) Omura, K.
Iodine oxidation of a-tocopherol and its model compound in alkaline
methanol: unexpected isomerization of the product quinone mono-
ketals. J. Org. Chem. 1989, 54, 1987–1990.
(18) CCDC 656779 contains the supplementary crystallographic data for
compound 2. The data can be obtained free of charge from The
data_request/cif.
(19) Dabby, R. E.; Kenyon, J.; Mason, R. F. The basic reductive fission of
sulfones. J. Chem. Soc. 1952, 4881–4882.
(20) Ketone 16 was separated from traces of epimerized diastereomers by
column chromatography. To confirm the configuration of 16 at the
C6 stereocenter, a diastereomeric mixture of selenides were separated
by silica gel flash column chromatography to afford the 2,3-anti-isomer
17a and the 2,3-syn-isomer 17b in 2:3 ratio. Observation of NOESY
correlations between H2 and H6 in the 2,3-anti-isomer 17a confirmed
its 6S configuration.
(3) (a) Maxwell, P. H.; Dach, G. U.; Gleadle, J. M.; Nicholls, L. G.; Harris,
A. L.; Stratford, I. J.; Hankinson, O.; Puch, C. W.; Ratcliffe, P. J.
Hypoxia-inducible factor-1 modulates gene expression in solid tumors
and influences both angiogenesis and tumor growth. Proc. Natl. Acad.
Sci. U.S.A. 1997, 94, 8104–8109. (b) Moeller, B. J.; Dreher, M. R.;
Rabbani, Z. N.; Schroeder, T.; Cao, Y.; Li, C. Y.; Dewhirst, M. W.
Pleiotropic effects of HIF-1 blockade on tumor radiosensitivity. Cancer
Cell 2005, 8, 99–110. (c) Ryan, H. E.; Lo, J.; Johnson, R. S. HIF-1a
is required for solid tumor formation and embryonic vascularization.
EMBO J. 1998, 17, 3005–3015. (d) Ryan, H. E.; Poloni, M.; McNulty,
W.; Elson, D.; Gassmann, M.; Arbeit, J. M.; Johnson, R. S. Hypoxia-
inducible factor-1a is a positive factor in solid tumor growth. Cancer
Res. 2000, 60, 4010–4015. (e) Unruh, A.; Ressel, A.; Mohamed, H. G.;
Johnson, R. S.; Nadrowitz, R.; Richter, E.; Katschinski, D. M.; Wenger,
R. H. The hypoxia-inducible factor-1a is a negative factor for tumor
therapy. Oncogene 2003, 22, 3213–3220.
(4) (a) Melillo, G. Targeting hypoxia cell signaling for cancer therapy.
Cancer Metastasis ReV. 2007, 26, 341–352. (b) Semenza, G. L.
Development of novel therapeutic strategies that target HIF-1. Expert
Opin. Ther. Targets 2006, 10, 267–280.
(5) Mohammed, K. A.; Hossain, C. F.; Zhang, L.; Bruick, R. K.; Zhou,
Y.-D.; Nagle, D. G. Laurenditerpenol, a new diterpene from the tropical
marine alga Laurencia intricata that potently inhibits HIF-1-mediated
hypoxic signaling in breast tumor cells. J. Nat. Prod. 2004, 67, 2002–
2007.
(6) (a) Caine, D.; Collison, R. F. Reactions of the lithium dienolate of
2,5-dimethyl-3(2H)-furanone with unsaturated compounds. Synlett
1995, 503–504. (b) Caine, D. S.; Paige, M. A. Reactions of a 3(2H)-
furanone lithium enolate with 4-halocrotonates. Synlett 1999, 1391–
1394. (c) Lipshutz, B. H. Five-membered heteroaromatic rings as
intermediates in organic synthesis. Chem. ReV. 1986, 86, 795–820.
(7) (a) Evans, D. A.; Chapman, K. T.; Bisaha, J. Asymmetric Diels-Alder
cycloaddition reactions with chiral R,ꢀ-unsaturated N-acyloxazoli-
dinones. J. Am. Chem. Soc. 1988, 110, 1238–1256. (b) Liao, L.-a.;
Zhang, F.; Yan, N.; Golen, J. A.; Fox, J. M. An efficient and general
method for resolving cyclopropene carboxylic acids. Tetrahedron 2004,
60, 1803–1816.
(8) CCDC 656780 contains the supplementary crystallographic data for
compound (-)-10. The data can be obtained free of charge from The
data_request/cif.
(9) Lange, G. L.; Corelli, N. Synthesis of the sesquiterpenoid lactarane
skeleton by a radical cyclobutylcarbinyl/cyclopropylcarbinyl fragmen-
tation sequence. Tetrahedron Lett. 2007, 48, 1963–1965.
(10) Miller, D.; Bilodeau, F.; Burnell, R. H. Stereoselective syntheses of
isomers of 3,7-dimethylnonadecane, a sex pheromone of the alfalfa
blotch leafminer (Agromyza frontella (Rondani)). Can. J. Chem. 1991,
69, 1100–1106.
(11) Yamanaka, M.; Arisawa, M.; Nishida, A.; Nakagawa, M. An intriguing
effect of Yb(OTf)3-TMSCl in the halogenation of 1,1-disubstituted
alkenes by NXS: Selective synthesis of allyl halides. Tetrahedron Lett.
2002, 43, 2403–2406.
(12) Hydrogenation with Pd/C-EtOAc, MeOH, or EtOH at H2 atm or 80
psi for 16 h did not furnish any required product. Hydrogenation with
Wilkinsons catalyst was also found to be unfavorable.
(13) (a) Kabalka, G. W.; Shoup, T. M.; Goudgaon, N. M. Sodium perborate:
A mild and convenient reagent for efficiently oxidizing organoboranes.
J. Org. Chem. 1989, 54, 5930–5933. (b) Stephan, E.; Brossat, M.;
Lecomte, V.; Bouit, P.-A. Synthesis of the 11b-hydroxymethyl-androst-
4-en-3,17-dione. Tetrahedron 2006, 62, 3052–3055.
(14) Paddon-Row, M. N.; Rondan, N. G.; Houk, K. N. Staggered models
for asymmetric induction: attack trajectories and conformations of
allylic bonds from ab initio transition structures of addition reactions.
J. Am. Chem. Soc. 1982, 104, 7162–7166.
(21) Kim, J. H.; Lim, H. J.; Cheon, S. H. A facile synthesis of (6S,1′S)-
(+)-hernandulcin and (6S,1′R)-(+)-epihernandulcin. Tetrahedron 2003,
59, 7501–7507.
(22) (a) Luche, J. L. Lanthanides in organic chemistry. 1. Selective 1,2-
reductions of conjugated ketones. J. Am. Chem. Soc. 1978, 100, 2226–
2227. (b) Luche, J. L.; Gemal, A. L. Lanthanoids in organic synthesis.
5. Selective reductions of ketones in the presence of aldehydes. J. Am.
Chem. Soc. 1979, 101, 5848–5849. (c) Luche, J. L.; Rodriguez-Hahn,
L.; Crabbe, P. Reduction of natural enones in the presence of cerium
trichloride. J. Chem. Soc., Chem. Commun. 1978, 601–602.
(23) (a) Serra, S.; Brenna, E.; Fuganti, C.; Maggioni, F. Lipase-catalyzed
resolution of p-menthan-3-ol monoterpenes: preparation of the enan-
tiomer-enriched forms of menthol, isopulegol, trans- and cis-piperitol,
and cis-isopiperitenol. Tetrahedron: Asymmetry 2003, 14, 3313–3319.
(b) Takao, K.; Tsujita, T.; Hara, M.; Tadano, K. Asymmetric total
syntheses of (+)-cheimonophyllon E and (+)-cheimonophyllal. J. Org.
Chem. 2002, 67, 6690–6698.
(24) Spectroscopic analysis and mechanistic implications of these kind of
systems are under progress, and the detailed results will be explored
elsewhere in the future.
(25) To improve the epimerized product yield, several basic conditions were
attempted. Either similar yield or decomposed product(s) especially
with metal hydrides in aprotic solvents was obtained. It was determined
at this stage to use this quick and processible reaction, albeit to provide
the material for exploration.
(26) See Supporting Information for a complete set of spectral data.
Regarding the rotation value, variation in rotation value from reported
1 and synthesized 1c may be due to nonidentical experimental
conditions. When we recorded the rotation of our authentic sample
and synthetic sample under identical experimental conditions, the
rotation value is identical.
(27) For experimental details, see Supporting Information.
(28) It is critical to note that due to the poor solubility of laurenditerpenol
in the formulation for biological evaluation, the original IC50 values
varied between separate concentration-response studies, and the
average IC50 value (0.4 µM) from a series of independent experiments
was ultimately reported. This variation in potency is within the range
of values observed in the original studies.
(15) (a) Mitsunobu, O. The use of diethyl azodicarboxylate and triphenyl-
phosphine in synthesis and transformation of natural products.
Synthesis 1981, 1–28. (b) Paquette, L. A.; Guevel, R.; Sakamoto, S.;
Kim, I. H.; Crawford, J. Convergent enantioselective synthesis of
JM7011062