presence of axial chirality was verified by chiral HPLC analysis and
derivatization experiments towards atropisomeric phosphabarre-
lenes. The rotational barrier for racemization was estimated both
theoretically by DFT calculations and experimentally by tempera-
1
ture dependent 31P{ H} NMR spectroscopy. Future investigations,
which are out of the scope of this communication, will focus on
the isolation of the enantiomers as well as their application in
asymmetric homogeneous catalysis.
Notes and references
§ The activation energies reported correspond to the low-energy clockwise
rotation path of the isomers shown in Fig. 1.
1 (a) G. Ma¨rkl, Angew. Chem., 1966, 78, 907; (b) A. J. Ashe, III, J. Am.
Chem. Soc., 1971, 93, 3293; (c) A. J. Ashe, III, Acc. Chem. Res., 1978, 11,
153; (d) K. Dimroth, Top. Curr. Chem., 1973, 38, 1–147; (e) G. Ma¨rkl,
in Multiple Bonds and Low Coordination in Phosphorus Chemistry,
ed. M. Regitz, O. J. Scherer, Thieme Verlag, Stuttgart, 1990, pp. 220;
(f) P. Le Floch in Phosphorus–Carbon Heterocyclic Chemistry: The Rise
of a New Domain, ed. F. Mathey, Pergamon, Palaiseau, 2001, pp. 485–
533; (g) F. Mathey, Angew. Chem., Int. Ed., 2003, 42, 1578; (h) F. Mathey
and P. Le, Floch, Sci. Synth., 2005, 15, 1097.
Scheme 3 Synthesis of phosphabarrelene 9 from 1. e: enantiomeric pair,
d: diastereomeric pair.
2 A. Gutnov, B. Heller, C. Fischer, H.-J. Drexler, A. Spannenberg, B.
Sundermann and C. Sundermann, Angew. Chem., Int. Ed., 2004, 43,
3795.
3 (a) B. Breit, Chem. Commun., 1996, 2071; (b) B. Breit, J. Mol. Catal. A:
Chem., 1999, 143, 143.
4 C. Mu¨ller, L. Guarrotxena-Lope´z, H. Kooijman, A. L. Spek and D.
Vogt, Tetrahedron Lett., 2006, 47, 2017.
5 (a) B. Breit, R. Winde and K. Harms, J. Chem. Soc., Perkin Trans. 1,
1997, 2681; (b) B. Breit, R. Winde, T. Mackewitz, R. Paciello and K.
Harms, Chem.–Eur. J., 2001, 7, 3106.
Scheme 4 Reaction of 9 with a chiral Pd-complex.
6 G. Ma¨rkl, Tetrahedron Lett., 1971, 12, 1249.
7 (a) B. Breit and E. Fuchs, Chem. Commun., 2004, 694; (b) E. Fuchs, M.
Keller and B. Breit, Chem.–Eur. J., 2006, 12, 6930.
8 (a) C. Mu¨ller, M. Lutz, A. L. Spek and D. Vogt, J. Chem. Crystallogr.,
2006, 36, 869; (b) C. Mu¨ller, D. Wasserberg, J. J. M. Weemers,
E. A. Pidko, S. Hoffmann, M. Lutz, A. L. Spek, S. C. J. Meskers,
R. A. Janssen, R. A. van Santen and D. Vogt, Chem.–Eur. J.,
2007, 13, 4548; (c) C. Mu¨ller and D. Vogt, Dalton Trans., 2007,
DOI: 10.1039/b712456m.
9 W. Theilacker and Horst Bo¨hm, Angew. Chem., 1967, 79, 232.
10 G. Bringmann, A. J. Price, Mortimer, P. A. Keller, M. J. Gresser,
J. Garner and M. Breuning, Angew. Chem., Int. Ed., 2005, 44,
5384.
1
31P{ H} NMR spectroscopy and in the expected ratio of 3 : 2 : 2 :
3 (see ESI‡).
DFT calculations additionally revealed, that the calculated
rotational barrier DG‡ around the Ca–Cb-bond in compound
9 equals 100 kJ mol−1298and is therefore comparable to that in
phosphinine 1 (Table 1, entry 3). Unlike for compound 1, the
mixture of stereoisomeric phosphabarrelenes also now provides
the opportunity of determining experimentally the rotational
barrier in compound 9. Upon heating, rotation around the Ca–
Cb is anticipated, leading to fast exchange on the NMR-time scale
and consequently to the formation of enantiomers with a single
11 DFT calcualtions were all performed at B3LYP/6–31G(d) level using
the Gaussian 03 program.12 The activation energies DE‡ reported were
corrected for zero-point energy. Activation Gibbs free energies DG‡
298
were calcualted using the ideal gas approximation at a pressure of 1
atm and a temperature of 298.15 K.
resonance in the 31P{ H} NMR spectrum.
1
12 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N.
Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone,
B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H.
Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X.
Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo,
J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin,
R. Cammi, C. Pomelli, J. Ochterski, P. Y. Ayala, K. Morokuma, G. A.
Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich,
A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck,
K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul,
S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P.
Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-
Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W.
Gill, B. G. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A.
Pople, GAUSSIAN 03 (Revision B.05), Gaussian, Inc., Pittsburgh, PA,
2003.
We therefore performed temperature dependent 31P{ H} NMR
1
spectroscopy of compound 9 in xylene. At T = 150 ◦C, coalescence
of the two signals starts to occur. Due to the experimental
conditions, measurements at even higher temperatures could not
be performed. Nevertheless, an experimental rotational barrier of
at least DG‡A(rot) ≥ 85 5 kJ mol−1 was estimated from the obtained
data,19 which agrees well with the above theoretical results. Due
to the similar structure of phosphabarrelene 9 and phosphinine
1 as well as due to the slightly higher calculated rotational
barrier for the latter compound, we believe that the experimental
value determined for 9 can be adequately extrapolated to phos-
phinine 1.
In summary, we demonstrated the design and the synthesis of
the first atropisomeric monodentate phosphinine by introducing
methyl-substituents into specific positions of the heterocyclic
moiety. The phosphinine was obtained as a racemate and the
13 (a) F. Ceccacci, G. Mancini, P. Mencarelli and C. Villani, Tetrahedron:
Asymmetry, 2003, 14, 3117; (b) F. Grein, J. Phys. Chem. A, 2002, 106,
3823; (c) S. Arulmozhiraja, P. C. Selvin and T. Fujii, J. Phys. Chem. A,
5374 | Dalton Trans., 2007, 5372–5375
This journal is
The Royal Society of Chemistry 2007
©