C O M M U N I C A T I O N S
Scheme 1 a
sialylgalactose unit was confirmed to be suitable as a glycosyl donor
for the synthesis of a GM4 analogue. This new strategy based on
Ireland-Claisen rearrangement should be applicable not only for
the synthesis of CF2-sialylgalactose but also for the construction
of various other (un)substituted C-sialoside units, which are
expected to be useful for the synthesis of novel ganglioside-
mimicking molecules. Synthesis of larger gangliosides, such as a
GM3, and biological experiments using CF2-linked ganglioside
analogues are currently under way.
Acknowledgment. We thank Ms. Setsuko Moriya for evaluation
of sialidase inhibitory activity, Dr. Daisuke Hashizume for the X-ray
crystallographic analysis, and Dr. Hiroyuki Koshino for 1D and
2D-NMR measurements.
Supporting Information Available: Experimental procedure,
1
characterization of new compounds, biological evaluations, H NMR
a Reaction conditions: (a) CF2Br2, HMPT, THF, rt, 4 h, 76% (see ref
19); (b) conc. HCl, MeOH-CH2Cl2 (4:1), rt, 92%; (c) (4-OMe)Ph-
CH(OMe)2, TsOH, CH3CN, rt; (d) TBAF, THF, rt, 74% (two steps);
(e) EDC‚HCl, DMAP, 4, CH2Cl2, rt, 72%; (f) LHMDS, TMSCl, THF,
-78 °C then rt; (g) TMSCHN2, Et2O-MeOH (1:1), 86% (two steps).
and 13C NMR spectra, and CIF file for compound 14. This material is
References
(1) (a) Hakomori, S. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 10231. (b)
Sonnino, S.; Mauri, L.; Chigorno, V.; Prinetti, A. Glycobiology 2007, 17,
1R.
Scheme 2 a
(2) (a) Hakomori, S. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 225. (b) Yoon,
S.-J.; Nakayama, K.; Hikita, T.; Handa, K.; Hakomori, S. Proc. Natl. Acad.
Sci. U.S.A. 2006, 103, 18987.
(3) (a) Rebbaa, A.; Hurh, J.; Yamamoto, H.; Kersey, D. S.; Bremer, E. G.
Glycobiology 1996, 6, 399. (b) Miljan, E. A.; Meuillet, E. J.; Mania-
Farnell, B.; George, D.; Yamamoto, H.; Simon, H.-G.; Bremer, E. G. J.
Biol. Chem. 2002, 277, 10108.
(4) (a) Miyagi, T.; Wada, T.; Yamaguchi, K.; Hata, K. Glycoconjugate J.
2004, 20, 189 and references therein. (b) Monti, E.; Bassi, M. T.; Bresciani,
R.; Civini, S.; Croci, G. L.; Papini, N.; Riboni, M.; Zanchetti, G.; Ballabio,
A.; Preti, A.; Tettamanti, G.; Venerando, B.; Borsani, G. Genomics 2004,
83, 445. (c) Yamaguchi, K.; Hata, K.; Koseki, K.; Shiozaki, K.; Akita,
H.; Wada, T.; Moriya, S.; Miyagi, T. Biochem. J. 2005, 390, 85.
(5) Seyrantepe, V.; Landry, K.; Trudel, S.; Hassan, J. A.; Morales, C. R.;
Pshezhetsky, A. V. J. Biol. Chem. 2004, 279, 37021.
(6) Wada, T.; Hata, K.; Yamaguchi, K.; Shiozaki, K.; Koseki, K.; Moriya,
S.; Miyagi, T. Oncogene 2007, 26, 2483.
(7) (a) Wada, T.; Yoshikawa, Y.; Tokuyama, S.; Kuwabara, M.; Akita, H.;
Miyagi, T. Biochem. Biophys. Res. Commun. 1999, 261, 21. (b) Oehler,
C.; Kopitz, J.; Cantz, M. Biol. Chem. 2002, 383, 1735.
(8) (a) Ueno, S.; Saito, S.; Wada, T.; Yamaguchi, K.; Satoh, M.; Arai, Y.;
Miyagi, T. J. Biol. Chem. 2006, 281, 7756. (b) Coetzee, T.; Fujita, N.;
Dupree, J.; Shi, R.; Blight, A.; Suzuki, K.; Suzuki, K.; Popko, B. Cell
1996, 86, 209.
a Reaction conditions: (a) 80% AcOH aq., rt, 80%; (b) TBSCl, Et3N,
DMAP, CH2Cl2, rt, 89%; (c) 2 M KOH aq., THF, 60 °C; (d) EDC‚HCl,
DMAP, CH2Cl2, rt, 77% (two steps); (e) OsO4 (1.7 equiv), pyridine, rt,
then sat. NaHSO3 aq., rt, 90%; (f) thiophosgene, DMAP, CH2Cl2, rt; (g)
Bu3SnH, AIBN, toluene, 100 °C, 84% (two steps); (h) Pd(OH)2/C, H2,
MeOH, rt, 99%; (i) Ac2O, pyridine, rt, 94%; (j) Ce(NH4)2(NO3)6, CH3CN-
H2O (4:1), rt; (k) Cl3CCN, DBU, CH2Cl2, rt, 75% (two steps); (l) 16, TfOH,
CH2Cl2, 0 °C, 33% (based on recovery); (m) NaOMe, MeOH, rt, then H2O,
rt, 60%.
(9) Burke, T. R., Jr. Curr. Top. Med. Chem. 2006, 6, 1465.
(10) For CF2-linked disaccharides: (a) Herpin, T. F.; Motherwell, W. B.; Tozer,
M. J. Tetrahedron: Asymmetry 1994, 5, 2269. (b) Kovensky, J.; Burrieza,
D.; Colliou, V.; Cirelli, A. F.; Sinay, P. J. Carbohydr. Chem. 2000, 19,
1. (c) Berber, H.; Brigaud, T.; Lefebvre, O.; Plantier-Royon, R.; Portella,
C. Chem. Eur. J. 2001, 7, 903. (d) Tony, K. A.; Denton, R. W.; Dilhas,
A.; Jime´nez-Barbero, J.; Mootoo, D. R. Org. Lett. 2007, 9, 1441.
(11) Beau, J.-M.; Vauzeilles, B.; Skrydstrup, T. C-Oligosaccharide Synthesis.
In Glycoscience: Chemistry and Chemical Biology; Fraiser-Reid, B. O.,
Tatsuta, K., Thiem, J., Eds.; Springer: Heidelberg, Germany, 2001; Vol.
3, p 2679.
(12) (a) Wallimann, K.; Vasella, A. HelV. Chim. Acta 1991, 74, 1520. (b) Nagy,
J. O.; Bednarski, M. D. Tetrahedron Lett. 1991, 32, 3953. (c) Paulsen,
H.; Matschulat, P. Liebigs. Ann. Chem. 1991, 487.
(13) (a) Vlahov, I. R.; Vlahova, P. I.; Linhardt, R. J. J. Am. Chem. Soc. 1997,
119, 1480. (b) Notz, W.; Hartel, C.; Waldscheck, B.; Schmidt, R. R. J.
Org. Chem. 2001, 66, 4250.
The overall yield of this CF2-linked sialoside unit from 6 was 13%
(15 steps).
To demonstrate the potential of this novel CF2-linked sialylga-
lactose unit 14 as an intermediate for the synthesis of ganglioside
analogues, conversion of 14 to CF2-linked GM4 (2) was performed.
After acetylation of all hydroxyl groups, the MP group at the
anomeric position was converted to trichloroacetoimidate to give
a glycosyl donor 15. Glycosylation of 15 with the ceramide
derivative 1620 was conducted in the presence of TfOH in CH2Cl2.
Finally, synthesis of 2 was completed by methanolysis and
hydrolysis. Although the yield of glycosidation with ceramide needs
to be improved, to our knowledge, this is the first synthesis of a
ganglioside analogue containing a CF2-sialoside linkage.
CF2-linked GM4 (2) showed moderate inhibition of NEU2 (IC50
) 754 µM) and NEU4 (IC50 ) 930 µM).15 A preliminary study
indicated that 2 also showed remarkable inhibition for human
lymphocyte proliferation.15,21 These results suggest that CF2-
sialoside can indeed act as a mimic of O-sialoside.
(14) Malapelle, A.; Abdallah, Z.; Doisneau, G.; Beau, J.-M. Angew. Chem.,
Int. Ed. 2006, 45, 6016-6020.
(15) See Supporting Information.
(16) CH(OH)-linked and CH2-linked SiaR(2,6)-GalNAc derivatives: (a) Ku-
beran, B.; Sikkander, S. A.; Tomiyama, H.; Linhardt, R. J. Angew. Chem.,
Int. Ed. 2003, 42, 2073. (b) Abdallah, Z.; Doisneau, G.; Beau, J.-M. Angew.
Chem., Int. Ed. 2003, 42, 5209.
(17) (a) Ireland, R. E.; Mueller, R. H.; Willard, A. K. J. Am. Chem. Soc. 1976,
98, 2868. (b) Daman, D. B.; Hoover, D. J. J. Am. Chem. Soc. 1990, 112,
6439. (c) Patel, S. T.; Percy, J. M.; Wilkes, R. D. Tetrahedron 1995, 51,
11327. (d) Recently non-selective Ireland-Craisen rearrangement of a
uronic acid derivative was reported: Werschkun, B.; Thiem, J. Tetrahe-
dron: Asymmetry 2005, 16, 569.
(18) Schmid, W.; Christian, R.; Zbiral, E. Tetrahedron Lett. 1988, 29, 3643.
(19) Zhao, Z.; Liu, H. J. Org. Chem. 2001, 66, 6810.
(20) Schmidt, R. R.; Zimmermann, P. Tetrahedron Lett. 1986, 27, 481.
(21) Ladisch, S.; Hasegawa, A.; Li, R.; Kiso, M. Biochemistry 1995, 34, 1197.
In conclusion, the CF2-R(2,3)sialylgalactose unit was synthesized
in a completely stereoselective manner, and this nonhydrolyzable
JA075738W
9
J. AM. CHEM. SOC. VOL. 129, NO. 50, 2007 15421