8992
M. Yamanaka et al. / Tetrahedron Letters 48 (2007) 8990–8993
bility Study, Japan Science and Technology Agency.
The research was partially carried out using an instru-
ment at the Center for Instrumental Analysis of
Shizuoka University.
Supplementary data
Experimental details and spectroscopic data can be
found in the PDF format. Supplementary data associ-
ated with this article can be found, in the online version,
References and notes
Figure 3. Plot of total binding constants of 1 with anions in acetone-d6
and minimum amount of anions required for the complete gel–sol
transition.
1. (a) Terech, P.; Weiss, R. G. Chem. Rev. 1997, 97, 3133–
3159; (b) van Esch, J. H.; Feringa, B. L. Angew. Chem.,
Int. Ed. 2000, 39, 2263–2266.
2. (a) Murata, K.; Aoki, M.; Suzuki, T.; Harada, T.;
Kawabata, H.; Komori, T.; Ohseto, F.; Ueda, K.; Shinkai,
S. J. Am. Chem. Soc. 1994, 116, 6664–6676; (b) de Jong, J.
J. D.; Lucas, L. N.; Kellogg, R. M.; van Esch, J. H.;
Feringa, B. L. Science 2004, 304, 278–281; (c) Eastoe, J.;
Self-aggregation of the gel could be Àreversed by anion
recognition. Titration results for BF4 were curve-fitted
with a 1:anion stoichiometry of 1:1, and the smallest
binding constant (logK11 = 1.27) for BF4À, which could
not cause the gel–sol transition.
´
Sanchez-Dominguez, M.; Wyatt, P.; Heenan, R. K. Chem.
Commun. 2004, 2608–2609.
3. Kawano, S.; Fujita, N.; Shinkai, S. J. Am. Chem. Soc.
2004, 126, 8592–8593.
4. Kim, H.-J.; Lee, J.-H.; Lee, M. Angew. Chem., Int. Ed.
2005, 44, 5810–5814.
An additional focus was on re-gelation in solutions
where gel disintegration had occurred through the addi-
tion of anions. Specific re-gelation would enable identi-
fication of the anions involved. The reaction of a
fluoride ion with boron trifluoride gave a tetrafluorobo-
rate ion15 which did not cause disintegration of the gel.
Addition of boron trifluoride etherate (BF3ÆOEt2) to the
acetone solution of 1 and FÀ caused re-gelation after
brief sonication (Fig. 1c). This sol–gel phase transition
could be repeated at least four times.16 The other ace-
tone solution of 1 and anions were attempted to re-gel-
ate by adding BF3ÆOEt2. Re-gelation was also proceeded
in the solution including AcOÀ after sonication. Homo-
geneous solutions remained unchanged with added
BF3ÆOEt2 for the solutions involving ClÀ, BrÀ, or IÀ
(Fig. 1c). Further experiments showed that ZnBr2 acted
as a non-specific chemical stimulus for re-gelation of an
acetone solution of 1 and anions. In contrast to
BF3ÆOEt2, ZnBr2 re-gelated all solutions containing
FÀ, ClÀ, BrÀ, IÀ, or AcOÀ (Fig. 1d).
5. (a) van Bommel, K. J. C.; van der Pol, C.; Muizebelt, I.;
Friggeri, A.; Heeres, A.; Meetsma, A.; Feringa, B. L.; van
Esch, J. H. Angew. Chem., Int. Ed. 2004, 43, 1663–1667;
(b) Hwang, I.; Jeon, W. S.; Kim, H.-J.; Kim, D.; Kim, H.;
Selvapalam, N.; Fujita, N.; Shinkai, S.; Kim, K. Angew.
Chem., Int. Ed. 2007, 46, 210–213.
6. (a) Beer, P. D.; Gale, P. A. Angew. Chem., Int. Ed. 2001,
40, 486–516; (b) Lavigne, J. J.; Anslyn, E. V. Angew.
Chem., Int. Ed. 2001, 40, 3118–3130; (c) Rudkevich, D. M.
Bull. Chem. Soc. Jpn. 2002, 75, 393–413.
7. (a) Wallace, K. J.; Belcher, W. J.; Turner, D. R.; Syed, K.
F.; Steed, J. W. J. Am. Chem. Soc. 2003, 125, 9699–9715;
(b) Turner, D. R.; Paterson, M. J.; Steed, J. W. J. Org.
Chem. 2006, 71, 1598–1608; (c) Tajc, S. G.; Miller, B. L. J.
Am. Chem. Soc. 2006, 128, 2532–2533; (d) Bhattarai, K.
M.; del Amo, V.; Magro, G.; Sisson, A. L.; Joos, J. B.;
Charmant, J. P. H.; Kantacha, A.; Davis, A. P. Chem.
Commun. 2006, 2335–2337; (e) Hisaki, I.; Sasaki, S.;
Hirose, K.; Tobe, Y. Eur. J. Org. Chem. 2007, 607–
615.
In conclusion, we have demonstrated that tris–urea 1
acts as low-molecular-weight gelators for a variety of
polar organic solvents, and that reversible sol–gel transi-
tions occur in response to chemical stimuli. These find-
ings may lead to a simple and convenient anion
detection method based on the principles of molecular
recognition.
8. (a) Vacca, A.; Nativi, C.; Cacciarini, M.; Pergoli, R.;
Roelens, S. J. Am. Chem. Soc. 2004, 126, 16456–16465; (b)
Nativi, C.; Cacciarini, M.; Francesconi, O.; Vacca, A.;
Moneti, G.; Ienco, A.; Roelens, S. J. Am. Chem. Soc.
2007, 129, 4377–4385.
9. (a) Metzger, A.; Lynch, V. M.; Anslyn, E. V. Angew.
Chem., Int. Ed. 1997, 36, 862–865; (b) Niikura, K.;
Metzger, A.; Anslyn, E. V. J. Am. Chem. Soc. 1998, 120,
8533–8534; (c) Kim, S.-G.; Kim, K.-H.; Jung, J.; Shin, S.
K.; Ahn, K. H. J. Am. Chem. Soc. 2002, 124, 591–596; (d)
´
`
Ballester, P.; Capo, M.; Costa, A.; Deya, P. M.; Gomila,
R.; Decken, A.; Deslongchamps, G. J. Org. Chem. 2002,
67, 8832–8841; (e) Dai, Z.; Xu, X.; Canary, J. W. Chem.
Commun. 2002, 1414–1415; (f) Mazik, M.; Cavga, H. J.
Org. Chem. 2007, 72, 831–838.
Acknowledgments
We thank Professor Kenji Kobayashi (Shizuoka Univer-
sity) for helpful discussions. We also thank Professor
Fraser Hof (University of Victoria) for his valuable
comments. This study was supported partially by Feasi-
10. (a) Stanley, C. E.; Clarke, N.; Anderson, K. M.; Elder, J.
A.; Lenthall, J. T.; Steed, J. W. Chem. Commun. 2006,