6522
Organometallics 2007, 26, 6522–6525
Synthesis and Reactivity of Platinum Group Metal Complexes
Featuring the New Pincer-like Bis(phosphino)silyl Ligand
[K3-(2-Ph2PC6H4)2SiMe]- ([PSiP]): Application in the
Ruthenium-Mediated Transfer Hydrogenation of Ketones
Morgan C. MacInnis,†,‡ Darren F. MacLean,†,‡ Rylan J. Lundgren,†,‡ Robert McDonald,§
and Laura Turculet*,‡
Department of Chemistry, Dalhousie UniVersity, Halifax, NoVa Scotia, Canada B3H 4J3, and
X-Ray Crystallography Laboratory, Department of Chemistry, UniVersity of Alberta,
Edmonton, Alberta, Canada T6G 2G2
ReceiVed September 25, 2007
anticipation that such novel ligand architectures will impart
unique physical and reactivity properties to the ensuing complexes.
Summary: The synthesis of coordinatiVely unsaturated Ru, Rh,
Pd, and Pt complexes supported by the new pincer-like
bis(phosphino)silyl ligand [κ3-(2-Ph2PC6H4)2SiMe]- ([PSiP])
is described. In the first application of silyl pincer-type
complexes in transfer hydrogenation catalysis, [PSiP]Ru species
were shown to be effectiVe in mediating the reduction of ketones
In this contribution, we report the synthesis and preliminary
coordination chemistry studies of the new pincer-like bis(phos-
phino)silyl ligand [κ3-(2-Ph2PC6H4)2SiMe]- ([PSiP]). Although
metal-silicon chemistry is well-precedented across the transition
series,3 relatively little attention has been given to the incorpora-
tion of silyl donor fragments into the framework of a preformed
tridentate ancillary ligand.4 A notable exception is the work of
Stobart and co-workers,5 who have reported late transition metal
complexes featuring bi-, tri-, and tetradentate phosphinosilyl
ligands. In addition, Tilley and co-workers have recently
reported Rh and Ir complexes featuring a rigid, tridentate NSiN
ligand framework.6 While it has been proposed that the
incorporation of strongly electron donating and trans-labilizing
silyl groups into such multidentate ligand architectures may
promote the formation of coordinatively unsaturated complexes
that exhibit enhanced reactivity properties, the catalytic utility
of metal complexes supported by such ancillary ligands has not
been widely demonstrated.6c,7 Herein we report the synthesis
and characterization of coordinatively unsaturated Ru, Rh, Pd,
and Pt complexes featuring [PSiP], as well as a preliminary
investigation of the catalytic utility of [PSiP]Ru species in the
transfer hydrogenation of ketones. In contrast to the phosphi-
nosilyl complexes previously reported by Stobart and co-workers
that feature an aliphatic or benzylic ligand backbone, we
anticipated that the reduced conformational flexibility and lack
of ꢀ-hydrogens associated with the rigid o-phenylene backbone
i
employing basic PrOH as the hydrogen source.
Cyclometalated phosphine-based “PCP” pincer complexes of
the platinum group metals have been the subject of intense
research in recent years, owing to the remarkable stoichiometric
and catalytic reactivity exhibited by such complexes.1 With the
goal of discovering new metal-mediated reactivity patterns and
extending the versatility of metal pincer chemistry, significant
effort has been devoted to the synthesis of structurally and/or
electronically related systems where strategic alterations have
been introduced to the pincer ligand architecture, including
variation of the central and peripheral donor fragments, as well
as the ancillary ligand backbone.1b,c,2 In this context, we are
interested in the synthesis and study of pincer-like metal
complexes supported by new tridentate ancillary ligands featur-
ing formally anionic heavier main group element donors, in
* To whom correspondence should be addressed. Tel: 1-902-494-6414.
Fax: 1-902-494-1310. E-mail: laura.turculet@dal.ca.
† These authors contributed equally to this work.
‡ Dalhousie University.
§ University of Alberta.
(1) (a) For selected recent examples and reviews see: Jensen, C. M.
Chem. Commun. 1999, 2443. (b) Albrecht, M.; van Koten, G. Angew. Chem.,
Int. Ed. 2001, 40, 3750. (c) van der Boom, M. E.; Milstein, D. Chem. ReV.
2003, 103, 1759. (d) Singleton, J. T. Tetrahedron 2003, 59, 1837. (e) Zhao,
J.; Goldman, A. S.; Hartwig, J. F. Science 2005, 307, 1080. (f) Goldman,
A. S.; Roy, A. H.; Huang, Z.; Ahuja, R.; Schinski, W.; Brookhart, M.
Science 2006, 312, 257.
(3) (a) Tilley, T. D. In The Silicon-Heteroatom Bond; Patai, S.,
Rappoport, Z. Eds.; Wiley: New York, 1991. (b) Corey, J. Y.; Braddock-
Wilking, J. Chem. ReV. 1999, 99, 175.
(4) (a) Balakrishna, M. S.; Chandrasekaran, P.; George, P. P. Coord.
Chem. ReV. 2003, 241, 87. (b) While the manuscript was in preparation,
Fe complexes supported by a structurally related tetradentate tris(phosphi-
no)silyl ligand were reported. Mankad, N. P.; Whited, M. T.; Peters, J. C.
Angew. Chem., Int. Ed. 2007, 46, 5768.
(2) For selected examples and reviews highlighting structural versatility
see: (a) Fryzuk, M. D. Can. J. Chem. 1992, 70, 2839. (b) Liang, L.-C.
Coord. Chem. ReV. 2006, 250, 1152. (c) Pugh, D.; Danopoulos, A. A. Coord.
Chem. ReV. 2006, 251, 610. (d) Gerisch, M.; Krumper, J. R.; Bergman,
R. G.; Tilley, T. D. J. Am. Chem. Soc. 2001, 123, 5818. (e) Lin, G.; Jones,
N. D.; Gossage, R. A.; McDonald, R.; Cavell, R. G. Angew. Chem., Int.
Ed. 2003, 42, 4054. (f) Ozerov, O. V.; Guo, C.; Papkov, V. A.; Foxman,
B. M. J. Am. Chem. Soc. 2004, 126, 4792. (g) Yao, Q.; Sheets, M. J. Org.
Chem. 2006, 71, 5384. (h) Frech, C. M.; Ben-David, Y.; Weiner, L.;
Milstein, D. J. Am. Chem. Soc. 2006, 128, 7128. (i) Fischer, J.; Schürmann,
M.; Mehring, M.; Zachwieja, U.; Jurkschat, K. Organometallics 2006, 25,
2886. (j) Kuklin, S. A.; Sheloumov, A. M.; Dolgushin, F. M.; Ezernitskaya,
M. G.; Peregudov, A. S.; Petrovskii, P. V.; Koridze, A. A. Organometallics
2006, 25, 5466. (k) Weng, W.; Parkin, S.; Ozerov, O. Organometallics
2006, 25, 5345. (l) Ma, L.; Imbesi, P. M.; Updegraff, J. B. III; Hunter,
A. D.; Protasiewicz, J. D Inorg. Chem. 2007, 46, 5220. (m) Aydin, J.; Senthil
Kumar, K.; Sayah, M. J.; Wallner, O. A.; Szabó, K. J. J. Org. Chem. 2007,
72, 4689. (n) Guananathan, C.; Ben-David, Y.; Milstein, D. Science 2007,
317, 790.
(5) (a) Auburn, M. J.; Stobart, S. R. Inorg. Chem. 1985, 24, 318. (b)
Joslin, F. L.; Stobart, S. R. J. Chem. Soc., Chem. Commun. 1989, 504. (c)
Auburn, M. J.; Holmes-Smith, R. D.; Stobart, S. R.; Bakshi, P. K.; Cameron,
T. S. Organometallics 1996, 15, 3032. (d) Gossage, R. A.; McLennan, G. D.;
Stobart, S. R. Inorg. Chem. 1996, 35, 1729. (e) Brost, R. D.; Bruce, G. C.;
Joslin, F. L.; Stobart, S. R. Organometallics 1997, 16, 5669. (f) Zhou, X.;
Stobart, S. R. Organometallics 2001, 20, 1898.
(6) (a) Stradiotto, M.; Fujdala, K. L.; Tilley, T. D. Chem. Commun.
2001, 1200. (b) Sangtrirutnugul, P.; Stradiotto, M.; Tilley, T. D. Organo-
metallics 2006, 25, 1607. (c) Sangtrirutnugul, P.; Tilley, T. D. Organome-
tallics 2007, 26, 5557.
(7) A report on the use of phosphinoalkylsilyl metal complexes as
catalysts for hydroformylation of olefins appears in the patent literature:
Stobart, S. R.; Grundy, S. L.; Joslin, F. L. U.S. Patent 4,950,798, 1990;
Canadian Patent 1,327,365, 1994.
10.1021/om7009528 CCC: $37.00
2007 American Chemical Society
Publication on Web 11/22/2007