C O M M U N I C A T I O N S
temperature and pressure with coexisting CdC or CdO functions
unaffected, with the exception that partial reduction occurred for
the CdC bond conjugated with the CdN group (entry 3). On behalf
of inertness to CdO bonds, reductive amination could be performed
by mixing aldehyde and primary amine directly under hydrogenation
conditions (entry 5). Conversion of a ternary iminium salt into a
tertiary ammonium salt also took place quantitatively (entry 6).
of hydride and proton to the CdO bond,6 as is widely accepted for
bifunctional molecular catalysts.2
It is still unclear whether deprotonation from the H2 adducts of
Rh thiolate complexes occurs directly at the stage of η2-H2 or after
formation of Rh(H)-S(H) species. However, their catalytic func-
tions may have some relevance to [Fe]-hydrogenases, which
generate a proton and transfer a hydride to an organic molecule at
a monoiron site bound to a cysteine residue.12,13
Scheme 2
Acknowledgment. This work was supported by Grants-in-Aid
for Scientific Research [18065005 on Priority Area “Chemistry of
Concerto Catalysis” and 21350033 (B)] from the Ministry of
Education, Culture, Sports, Science, and Technology, Japan.
Supporting Information Available: Experimental details and X-ray
analysis data for 2 (CIF). This material is available free of charge via
References
(1) (a) Brothers, P. J. Prog. Inorg. Chem. 1981, 28, 1. (b) Morris, R. H. Can.
J. Chem. 1996, 74, 1907. (c) Kubas, G. J. AdV. Inorg. Chem. 2004, 56,
127.
Table 2. Hydrogenation of Various Imines Catalyzed by 5a
(2) Recent reviews: (a) Noyori, R.; Ohkuma, T. Angew. Chem., Int. Ed. 2001,
40, 40. (b) Clapham, S. E.; Hadzovic, A.; Morris, R. H. Coord. Chem.
ReV. 2004, 248, 2201. (c) Ito, M.; Ikariya, T. Chem. Commun. 2007, 5134.
(3) Recent reviews: (a) Volbeda, A.; Fontecilla-Camps, J. C. Dalton Trans.
2003, 4030. (b) De Lacey, A. L.; Ferna´ndez, V. M.; Rousset, M.; Cammack,
R. Chem. ReV. 2007, 107, 4304. (c) Siegbahn, P. E. M.; Tye, J. W.; Hall,
M. B. Chem. ReV. 2007, 107, 4414. (d) Tard, C.; Pickett, C. J. Chem. ReV.
2009, 109, 2245. (e) Gloaguen, F.; Rauchfuss, T. B. Chem. Soc. ReV. 2009,
38, 100.
(4) (a) Sellmann, D.; Ka¨ppler, J.; Moll, M. J. Am. Chem. Soc. 1993, 115, 1830.
(b) Jessop, P. G.; Morris, R. H. Inorg. Chem. 1993, 32, 2236. (c) Sellmann,
D.; Gottschalk-Gaudig, T.; Heinemann, F. W. Inorg. Chem. 1998, 37, 3982.
(d) Sellmann, D.; Fu¨rsattel, A. Angew. Chem., Int. Ed. 1999, 38, 2023. (e)
Sellmann, D.; Geipel, F.; Moll, M. Angew. Chem., Int. Ed. 2000, 39, 561.
(f) Sellmann, D.; Prakash, R.; Heinemann, F. W.; Moll, M.; Klimowicz,
M. Angew. Chem., Int. Ed. 2004, 43, 1877. (g) Matsumoto, T.; Nakaya,
Y.; Tatsumi, K. Angew. Chem., Int. Ed. 2008, 47, 1913.
(5) (a) Schlaf, M.; Lough, A. J.; Morris, R. H. Organometallics 1996, 15, 4423.
(b) Sellmann, D.; Rackelmann, G. H.; Heinemann, F. W. Chem.sEur. J.
1997, 3, 2071. (c) Ohki, Y.; Sakamoto, M.; Tatsumi, K. J. Am. Chem. Soc.
2008, 130, 11610.
(6) Ohki, Y.; Takikawa, Y.; Sadohara, H.; Kesenheimer, C.; Engendahl, B.;
Kapatina, E.; Tatsumi, K. Chem.sAsian J. 2008, 3, 1625.
a Conditions: substrate (1.00 mmol), 5 (0.01 mmol), THF (5 mL), H2
(1 atm), 20 °C, 1 h. b NMR determination (entries 1-3, 6) or isolated
yields (entries 4 and 5). c Octanal (1.01 mmol) was added to a solution
of aniline (1.02 mmol) and 5 (0.020 mmol) under a H2 atmosphere.
In contrast to 1, no observable change in 5 occurred under 1
atm H2. However, addition of NEt3 to its THF solution caused rapid
formation of an off-white solid, which was characterized as
[Et3NH][TpMe2RhH(o-S2C6H4)] ([Et3NH]6). The hydrido ligand in
6- exhibited an 1H signal at -18.90 (d, JRhH ) 14.8 Hz) and an IR
absorption for ν(Rh-H) at 2104 cm-1. Because of the appearance
of the ν(N-H) band at 2670 cm-1 characteristic of tertiary
ammonium cation, 6- was identified as a monoanion. From this
result, it is plausible that {TpMe2Rh(o-S2C6H4)} and H2 form an
adduct that may shift H+ to the imine and also that the resulting
6- transfers H- to this iminium cation. This mechanism, namely,
ionic hydrogenation,8 is supported by the decrease in the catalytic
rate in the less-polar benzene medium (Table 1, entry 10).9 The
major catalytic cycle of imine reduction by 1 is also considered to
be similar, because the anionic hydrido complex analogous to 6-
can be prepared from 1 under the same conditions. Such a reaction
pathway mediated by formation of an active iminium ion has been
proposed in some other catalytic systems.10 The preferential addition
of H2 to the CdN bond over the CdO bond as observed here is
uncommon.11 Presumably, the H2 adduct of the Rh species is not
acidic enough to protonate O atom, and the nucleophilicity of 6-
is not strong enough to reduce the nonactivated CdO bond. On
the other hand, hydrogenation of acetophenone by a Ru thiolate
complex has been proposed to proceed via the concerted transfer
(7) (a) Takagi, F.; Seino, H.; Hidai, M.; Mizobe, Y. Organometallics 2003,
22, 1065. (b) Seino, H.; Yoshikawa, T.; Hidai, M.; Mizobe, Y. Dalton
Trans. 2004, 3593. (c) Nagao, S.; Seino, H.; Hidai, M.; Mizobe, Y. Dalton
Trans. 2005, 3166. (d) Kajitani, H.; Seino, H.; Mizobe, Y. Organometallics
2005, 24, 6260. (e) Misumi, Y.; Seino, H.; Mizobe, Y. J. Organomet. Chem.
2006, 691, 3157. (f) Saito, A.; Seino, H.; Kajitani, H.; Takagi, F.; Yashiro,
A.; Ohnishi, T.; Mizobe, Y. J. Organomet. Chem. 2006, 691, 5746.
(8) (a) Bullock, R. M.; Voges, M. H. J. Am. Chem. Soc. 2000, 122, 12594. (b)
Magee, M. P.; Norton, J. R. J. Am. Chem. Soc. 2001, 123, 1778. (c) Bullock,
R. M. Chem.sEur. J. 2004, 10, 2366. (d) Guan, H.; Iimura, M.; Magee,
M. P.; Norton, J. R.; Zhu, G. J. Am. Chem. Soc. 2005, 127, 7805. (e)
Namorado, S.; Antunes, M. A.; Veiros, L. F.; Ascenso, J. R.; Duarte, M. T.;
Martins, A. M. Organometallics 2008, 27, 4589.
(9) Addition of MeCN also retarded the catalysis by 5.
(10) (a) Casey, C. P.; Singer, S. W.; Powell, D. R.; Hayashi, R. K.; Kavana, M.
J. Am. Chem. Soc. 2001, 123, 1090. (b) Åberg, J. B.; Samec, J. S. M.;
Ba¨ckvall, J.-E. Chem. Commun. 2006, 2771. (c) Shirai, S.; Nara, H.; Kayaki,
Y.; Ikariya, T. Organometallics 2009, 28, 802.
(11) (a) Ng Cheong Chan, Y.; Meyer, D.; Osborn, J. A. J. Chem. Soc., Chem.
Commun. 1990, 869. (b) Ng Cheong Chan, Y.; Osborn, J. A. J. Am. Chem.
Soc. 1990, 112, 9400. (c) Gross, T.; Seayad, A. M.; Ahmad, M.; Beller,
M. Org. Lett. 2002, 4, 2055.
(12) (a) Shima, S.; Thauer, R. K. Chem. Rec. 2007, 7, 37. (b) Shima, S.; Pilak,
O.; Vogt, S.; Schick, M.; Stagni, M. S.; Meyer-Klaucke, W.; Warkentin,
E.; Thauer, R. K.; Ermler, U. Science 2008, 321, 572. (c) Hiromoto, T.;
Ataka, K.; Pilak, O.; Vogt, S.; Stagni, M. S.; Meyer-Klaucke, W.;
Warkentin, E.; Thauer, R. K.; Shima, S.; Ermler, U. FEBS Lett. 2009, 583,
585.
(13) (a) Royer, A. M.; Rauchfuss, T. B.; Gray, D. L. Organometallics 2009,
28, 3618. (b) Yang, X.; Hall, M. B. J. Am. Chem. Soc. 2009, 131, 10901.
JA905835U
9
J. AM. CHEM. SOC. VOL. 131, NO. 41, 2009 14637