Erb, S. “Effects of central neurokinin-1 receptor antagonism on
cocaine- and opiate-induced locomotor activity and self-
administration behaviour in rats” Pharmacology Biochemistry
and Behavior, 2006, 84, 1, 94-101.
1 Hedden, S. L.; Kennet, J.; Lipari, R.; Medley, G.; Tice, P.;
Copello, E. A. P.; Kroutil, L. A. “Behavioral Health Trends in
the United States: Results from the 2014 National Survey on
Drug Use and Health” Center for Behavioral Health Statistics
and Quality, 2015, HHS Publication No. SMA 15-4927,
NSDUH Series H-50, Retrieved from
12 Baker, D. A.; McFarland, K.; Lake, R. W.; Shen, H.; Toda,
S.; Kalivas, P. W. “N‐Acetyl cysteine‐induced blockade of
cocaine‐induced reinstatement.” Annals of the New York
Academy of Sciences, 2003, 1003, 349-351.
13 Harvey-Lewis, C.; Li, Z.; Higgins, G. A.; Fletcher, P. J. “The
5-HT2C receptor agonist lorcaserin reduces cocaine self-
administration, reinstatement of cocaine-seeking and cocaine
induced locomotor activity.” Neuropharmacology. 2016, 101,
237-245.
2 National Institute on Drug Abuse. (2012, November). Medical
consequences of drug abuse. Retrieved from
14 Roeper, J. “Dissecting the diversity of midbrain dopamine
neurons.” Trends in Neuroscience, 2013, 36, 6, 336-342.
15 Jaber, M.; Robinson, S.W.; Missale, C.; Caron, M.G.
“Dopamine receptors and brain function.” Neuropharmacology.
1996, 35, 11, 1503-1519.
3 Calatayud, J.; González, A. “History of the development and
evolution of local anesthesia since the coca leaf”,
Anesthesiology. 2003, 98, 6, 1503-1508.
4 Balk, J. H. “Dopamine signaling in reward-related behaviors.”
Frontiers in Neural Circuits, 2013, 7, 152, 1-16.
5 Nestler, E. J. “The Neurobiology of Cocaine Addiction”,
Science and Practice Perspectives, 2005, 3, 1, 4-10.
6 Substance Abuse and Mental Health Services Administration,
Drug Abuse Warning Network, 2011:
16 (a) Staley, J. K.; Mash, D. C. “Adaptive increase in D3
dopamine receptors in the brain reward circuits of human
cocaine fatalities.” Journal of Neuroscience, 1996, 16,
6100−6106. (b) Segal, D. M.; Moraes, C. T.; Mash, D. C. Up-
regulation of D3 dopamine receptor mRNA in the nucleus
accumbens of human cocaine fatalities.” Brain Research
Molecular Brain Research 1997, 45, 335−339. (c) Mash, D. C.;
Staley, J. K. D3 dopamine and kappa opioid receptor alterations
in human brain of cocaine-overdose victims. Annals of the New
York Academies of Science, 1999, 877, 507−522.
National Estimates of Drug-Related Emergency Department
Visits. HHS Publication No. (SMA) 13-4760,
DAWN Series D-39. Rockville, MD: Substance Abuse and
Mental Health Services Administration, 2013.
7 (a) Schierenberg, A.; van Amsterdam, J.; van den Brink, W.;
Goudriaan, A. E. "Efficacy of contingency management for
cocaine dependence treatment: a review of the evidence."
Current Drug Abuse Reviews, 2012, 5, 4, 320-331. (b)
Penberthy, J. K.; Ait-Daoud, N.; Vaughan, M.; Fanning, T.
"Review of treatment for cocaine dependence." Current Drug
Abuse Reviews, 2010, 3, 1, 49-62.
17 (a) Keck, T. M.; John, W. S.; Czoty, P. W.; Nader, M. A.;
Hauck Newman, A. H. “Identifying Medication Targets for
Psychostimulant Addiction: Unraveling the Dopamine D3
Receptor Hypothesis.” Journal of Medicinal Chemistry, 2015,
58, 5361−5380. (b) Newmana, A. H.; Blaylock, B. L.; Nader,
M. A.; Bergman, J.; Sibley, D. R.; Skolnick, P. “Medication
discovery for addiction: Translating the dopamine D3 receptor
hypothesis.” Biochemical Pharmacology, 2012, 84, 882–890.
(c) Payer, D.; Balasubramaniam, G.; Boileau, I. “What is the
role of the D3 receptor in addiction? A mini review of PET
studies with [11C]-(+)-PHNO.” Progress in Neuro-
8 (a) Oliveto, A.; Poling, J.; Mancino, M. J.; Feldman, Z.;
Cubells, J. F.; Pruzinsky, R.; Gonsai, K.; Cargile, C.; Sofuoglu,
M.; Chopra, M. P.; Gonzalez-Haddad, G.; Carroll, K. M.;
Kosten, T. R. “Randomized, double-blind, placebo controlled
trial of disulfiram for the treatment of cocaine dependence in
methadone-stabilized patients.” Drug and Alcohol Dependence,
2011, 113, 2-3, 184-191. (b) McCance-Katz, E. F.; Kosten, T.
R.; Jatlow, P. “Disulfiram effects on acute cocaine
administration.” Drug and Alcohol Dependence, 1998, 52, 1,
27-39.
Psychopharmacology and Biological Psychiatry, 2014, 52, 4–8.
(d) Blaylock, B. L.; Nader, M. A. “Dopamine D3 Receptor
Function and Cocaine Exposure”, Neuropsychopharmacology,
2012, 37, 297–298.
18 Anderson, S. M.; Pierce, R. C. “Cocaine-induced alterations
in dopamine receptor signaling: Implications for reinforcement
and reinstatement.” Pharmacology and Therapeutics, 2005,
106, 3, 389-403.
9 Somoza, E. C.;, Winship, D.; Gorodetzky, C. W.; Lewis, D.;
Ciraulo, D. A.; Galloway, G. P.; Segal, S. D.; Sheehan, M.;
Roache, J. D.; Bickel, W. K.; Jasinski, D.; Watson, D. W.;
Miller, S. R.; Somoza, P.; Winhusen, T. ”A multisite, double-
blind, placebo-controlled clinical trial to evaluate the safety and
efficacy of vigabatrin for treating cocaine dependence.” Journal
of the American Medical Society Psychiatry, 2013, 70, 6, 630-
637.
19 Millan, M. J.; Loiseau, F.; Dekeyne, A.; Gobert, A.; Flik, G.;
Cremers, T. I.; Rivet, J. M.; Sicard, D.; Billiras, R.; Brocco, M.
"S33138 (N-[4-[2-[(3aS, 9bR)-8-cyano-1, 3a, 4, 9b-tetrahydro
[1] benzopyrano [3, 4-c] pyrrol-2 (3H)-yl)-ethyl] phenyl-
acetamide), a preferential dopamine D3 versus D2 receptor
antagonist and potential antipsychotic agent: III. Actions in
models of therapeutic activity and induction of side effects."
The Journal of Pharmacology and Experimental Therapeutics,
2008, 324, 3, 1212-1226.
10 Johnson, B. A.; Ait-Daoud, N.; Wang, X. Q.; Penberthy, J.
K.; Javors, M. A.; Seneviratne, C.; Liu, L.; “Topiramate for the
treatment of cocaine addiction: a randomized clinical trial.”
Journal of the American Medical Society Psychiatry, 2013,
70,12, 1338-1346.
20 Cheung, T. H.; Loriaux, A. L.; Weber, S. M.; Chandler, K.
N.; Lenz, J. D.; Schaan, R. F.; Mach, R. H.; Luedtke, R. R.;
11 Franca M.Placenzaa, F. M.; Fletcher, P. J.; Vaccarino, F. J.;