554
L. Xu et al. / Tetrahedron Letters 50 (2009) 552–554
References and notes
Ph
H2N
Ph
H2N
1. (a) Fache, F.; Schulz, E.; Tommasino, M. L.; Lemaire, M. Chem. Rev. 2000, 100,
NH2
NH2
2159. and references cited therein; (b) Lucet, D.; Le Gall, T.; Mioskowski, C.
Angew. Chem., Int. Ed. 1998, 37, 2580–2627. and references cited therein.
2. Kempf, D. J.; Sham, H. L.; Marsh, K. C.; Flentge, C. A.; Betebenner, D.; Green, B.
E.; McDonald, E.; Vasavanonda, S.; Saldivar, A.; Wideburg, N. E.; Kati, W. M.;
Ruiz, L.; Zhao, C.; Fino, L.; Patterson, J.; Molla, A.; Plattner, J. J.; Norbeck, D. W. J.
Med. Chem. 1998, 41, 602.
18
17
Figure 2.
3. Barton, D. H. R.; McCombie, S. W. J. Chem. Soc., Perkin Trans. 1 1975, 1574.
4. (a) Hodgson, D. M.; Humphreys, P. G.; Miles, S. M.; Brieley, C. A.; Ward, J. G. J.
Org. Chem. 2007, 72, 10009; (b) Hodgson, D. M.; Miles, S. M. Angew. Chem., Int.
Ed. 2006, 45, 935; (c) Enders, D.; Meiers, M. Synthesis 2003, 17, 2542; (d)
Yamauchi, T.; Higashiyama, K.; Kubo, H.; Ohmiya, S. Tetrahedron: Asymmetry
2000, 11, 30003; (e) Gurjar, M. K.; Pal, S.; Rao, A. V. R.; Pariza, R. J.; Chorghade,
M. S. Tetrahedron 1997, 53, 4769; (f) Rao, A. V. R.; Gurjar, M. K.; Pal, S.; Pariza, R.
J.; Chroghade, M. S. Tetrahedron Lett. 1995, 36, 2505.
5. Beier, C.; Schaumann, E.; Adiwidjaja, G. Synlett 1998, 41.
6. Blackwell, H. E.; O’Leary, D. J.; Chatterjee, A. K.; Washenfelder, R. A.; Bussmann,
D. A.; Grubbs, R. H. J. Am. Chem. Soc. 2000, 122, 58.
7. (a) Alcón, M.; Canas, M.; Poch, M.; Moyano, A.; Pericàs, M. A.; Riera, A.
Tetrahedron Lett. 1994, 35, 1589; (b) Alcón, M.; Poch, M.; Moyano, A.; Pericàs,
M. A. Tetrahedron: Asymmetry 1997, 8, 2967; (c) Robertson, J.; Stafford, P. M.;
Bell, S. J. J. Org. Chem. 2005, 70, 7133.
hydrofuran (THF)/hexanes. Reaction of diol 13 with 1,10-thi-
ocarbonyldiimidazole in refluxed THF yielded cyclic thiocarbonate
16. Treatment of thiocarbonate 16 with triethylphosphite at
160 °C generated alkene 12. We found that the purity of the thiocar-
bonate 16 was very important for a successful elimination. The de-
sired purity of thiocarbonate 16 could be achieved by a quick flash
chromatography or by washing the reaction mixture with dilute
hydrochloric acid. The symmetric alkene 12 was a highly crystalline
compound, and it could be recrystallized easily in ethyl acetate/
hexanes. Finally, hydrogenation of alkene 12 under one atmosphere
of hydrogen catalyzed by 10%Pd/C afforded diamine 1. In this se-
quence, diamine 1 was prepared from diol 13 in excellent yields
(70–80%).11 Using this method, the diamine 1 can be prepared in to-
tal five steps from Cbz-protected phenylalaninol. The reactions
were carried out on hundred-gram scales, and purifications for
the whole sequence were achieved through recrystallizations.
Similarly, the (S,S)-enantiomer 17 (Fig. 2) was synthesized on a
hundred-gram scale following the same sequence starting from
8. Mergmann, M.; Zervas, L. Ber. 1932, 65, 1192.
9. (a) Sergeev, M. E.; Pronin, V. B.; Voyushina, T. L. Synlett 2005, 2802; (b)
Debaene, F.; Silva, J. A. D.; Pianowski, Z.; Durran, F. J.; Winssinger, N.
Tetrahedron 2007, 63, 6577; (c) Nakamura, M.; Miyashita, H.; Yamaguchi, M.;
Shirasaki, Y.; Nakamura, Y.; Inoue, J. Bioorg. Med. Chem. 2003, 11, 5449.
10. Lam, P. Y. S.; Ru, Y.; Jadhav, P. K.; Aldrich, P. E.; DeLucca, G. V.; Eyermann, C. J.;
Chang, C.; Emmett, G.; Holler, E. R.; Daneker, W. F.; Li, L.; Confalone, P. N.;
McHugh, R. J.; Han, Q.; Li, R.; Markwalder, J. A.; Seitz, S. P.; Sharpe, T. R.;
Bacheler, L. T.; Rayner, M. M.; Klabe, R. M.; Shum, L.; Winslow, D. L.;
Kornhauser, D. M.; Jackson, D. A.; Erickson-Viitanen, S.; Hodge, C. N. J. Med.
Chem. 1996, 39, 3514.
Cbz-D-phenylalaninol. Other alkyl-substituted C2-symmetric 1,4-
11. Typical experimental procedure: Diol 13 (50.0 g, 88 mmol) was dissolved in THF
(1500 ml) with heating, and the solution was cooled to 25 °C. 1,10-
Thiocarbonyldiimidazole (31.3 g, 176 mmol) was added, and the mixture was
refluxed for 60 h. The reaction mixture was cooled to 25 °C and filtered. Then,
the mixture was concentrated to give a brown solid. The solid was dissolved in
ethyl acetate (1000 ml), and the resulted solution was washed with 2.5% HCl
solution (400 ml/200 ml/200 ml), followed by water (200 ml), saturated
sodium bicarbonate solution (200 ml), and brine. The solution was dried over
sodium sulfate and concentrated to give compound 16 as a yellow solid
(56.0 g). To above solid was added triethylphosphite (200 ml), and the mixture
was heated at 165 °C for 24 h. Excess triethylphosphite was removed under
reduced pressure to give compound 12. Recrystallization of the crude material
from ethyl acetate and hexanes gave pure olefin 12 as a white solid (36.5 g) in
77% yield. m/z: 535.1 (M+H)+; 1H NMR (CDCl3) d 7.4–7.0 (20H, m), 5.47 (2H, m),
5.07 (4H, s), 4.62 (2H, m), 4.45 (2H, m), 2.78 (4H, d, J = 6.1 Hz).
diamines, such as diamine 18, were also prepared in a similar man-
ner and in comparable yields when starting from the correspond-
ing amino alcohols or amino acids (Fig. 2).
In conclusion, we have developed a novel and practical method
for diastereoselective synthesis of chiral C2-symmetric 1,4-dia-
mines from easily accessible amino alcohols or amino acids.
Acknowledgment
The authors thank Dr. Randall Halcomb for proof reading the
manuscript and for helpful discussions.