particle density starting from 104 particles mm22 on the
hydrolysed acid end reducing to 0 particles mm22 on the non-
hydrolysed end. The extent of the particle gradient could
potentially be tuned by varying the pH at which the acid
gradient SAM is immersed in the particle solution, or by the
extent of the acid gradient in the underlying SAM, which can be
controlled by the temperature and pH of the aqueous solution.
9 J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo and
G. M. Whitesides, Chem. Rev., 2005, 105, 1103–1169.
10 L. C. P. M. de Smet, H. Zuilhof, E. J. R. Sudho¨lter, L. H. Lie,
A. Houlton and B. R. Horrocks, J. Phys. Chem. B, 2005, 109,
12020–12031.
11 A. Ulman, Chem. Rev., 1996, 96, 1533.
12 S. Jayaraman and A. C. Hillier, Langmuir, 2001, 17, 7857–7864.
13 A. Shosky and H. Scho¨nherr, Langmuir, 2005, 21, 4393–4399.
14 H. Elwing, S. Welin, A. Askendal, U. Nilsson and I. Lundstro¨m,
J. Colloid Interface Sci., 1987, 151, 203–210.
15 I. Caelen, H. Gao and H. Sigrist, Langmuir, 2002, 18, 2463–2467.
16 T. G. Ruardy, J. M. Schakenraad, H. C. van der Mei and
H. J. Busscher, Surf. Sci. Rep., 1997, 29, 1–30; C. B. Herbert,
T. L. MacLernon, C. L. Hypolite, D. N. Adams, L. Pikus,
C.-C. Huand, G. B. Fields, P. C. Letourneu, M. D. Distefano and
W.-S. Hu, Chem. Biol., 1997, 4, 731–737; C. L. Hypolite,
T. L. Mcleernon, D. N. Adams, K. E. Chapman, C. B. Herbert,
C. C. Huang, M. D. Distefano and W.-S. Hu, Bioconjugate Chem.,
1997, 8, 658–663; B. T. Houseman and M. Mrksich, Chem. Biol.,
2002, 9, 443–454; J. Bowen, M. E. Pettitt, K. Kendall, G. J. Leggett,
J. A. Preece, M. E. Callow and J. A. Callow, J. R. Soc. Interface,
2006, 1–5.
Acknowledgements
This work was supported by BAE SYSTEMS and EPSRC
(DTA to PI), as well as the EU (Nano3D, contract number
NMP4-CT-2005-014000). We thank the research group of
Prof. Graham Leggett for use of their thermal evaporation
apparatus to fabricate the Au substrates.
References
17 R. R. Bhat, D. A. Fischer and J. Genzer, Langmuir, 2002, 18,
5640–5643.
1 C. Joachim, J. K. Gimzewski and A. Aviram, Nature, 2000, 408,
548; A. N. Shipway, E. Katz and I. Willner, ChemPhysChem, 2000,
1, 18–52; J. J. Gooding, F. Mearns, W. Yang and J. Liu,
Electroanalysis, 2003, 15, 81–96.
2 P. M. Mendes and J. A. Preece, Curr. Opin. Colloid Interface Sci.,
2004, 9, 236–248.
18 B. Lieberg and P. Tengvall, Langmuir, 1995, 11, 3821–3827; B. E.
Baker, N. J. Kline, P. J. Treado and M. J. Natan, J. Am. Chem.
Soc., 1996, 118, 8721–8722; B. Lieberg, M. Wirde, Y.-T. Tao,
P. Tengvall and U. Gelius, Langmuir, 1997, 13, 5329–5334;
K. Efimenko and J. Genzer, Adv. Mater., 2001, 13, 1560–1563.
19 B. E. Baker, N. J. Kline, P. J. Treado and M. J. Natan, J. Am.
Chem. Soc., 1996, 118, 8721–8722.
20 R. H. Terrill, K. M. Balss, Y. Zhang and P. W. Bohn, J. Am.
Chem. Soc., 2000, 122, 988–989; K. M. Balss, G. A.. Fried and
P. W. Bohn, J. Electrochem. Soc., 2002, 149, C450–C455;
S. T. Plummer and P. W. Bohn, Langmuir, 2002, 18, 4142–4149;
T. Sehayek, A. Vaskevich and I. Rubinstein, J. Am. Chem. Soc.,
2003, 125, 4718–4719.
21 N. L. Jeon, S. K. W. Dertinger, D. T. Chiu, I. S. Choi,
A. D. Stroock and G. M. Whitesides, Langmuir, 2000, 16,
8311–8316; I. Caelen, A. Bernard, D. Juncker, B. Michel,
H. Heinzelmann and E. Delamarche, Langmuir, 2000, 16,
9125–9130; S. K. W. Dertinger, D. T. Chui, N. L. Jeon and
G. M. Whitesides, Anal. Chem., 2001, 73, 1240–1246.
22 W. G. Pitt, J. Colloid Interface Sci., 1989, 133, 223–227.
23 J. H. Lee, H. G. Kim, G. S. Khang, H. B. Lee and M. S. Jhon,
J. Colloid Interface Sci., 1992, 151, 563–570.
24 H. T. Spijker, R. Bos, W. van Oeveren, J. de Vries and
H. J. Busscher, Colloids Surf., B, 1999, 15, 89–97.
ˆ
25 T. Wu, K. Efimenko, P. Vlcˇek, V. Subr and J. Genzer,
Macromolecules, 2003, 36, 2448–2453.
26 S. Myung, J. Im, L. Huang, S. G. Rao, T. Kim, D. J. Lee and
S. Hong, J. Phys. Chem. Lett., 2006, 110, 10127–10219.
27 E. Kokkoli and C. F. Zukoski, Langmuir, 2001, 17, 369–376.
28 L. Li and S. Chenand S. Jiang, Langmuir, 2003, 19, 2974–2982.
29 C. D. Tidwell, S. I. Ertel and B. D. Ratner, Langmuir, 1997, 13,
3404–3413; C. A. Scotchford, C. P. Gilmoree, E. Cooper,
G. J. Leggett and S. Downea, Langmuir, 2003, 19, 379–387.
30 K. Lee, F. Pan, G. T. Carrol, N. J. Turro and J. T. Koberstein,
Langmuir, 2004, 20, 1812–1818.
3 P. E. Laibinis and G. M. Whitesides, J. Am. Chem. Soc., 1992, 114,
9022–9028; P. C. Rieke, D. R. Baer, G. E. Fryxell, M. H. Engelhard
and M. S. Porter, J. Vac. Sci. Technol., A, 1993, 11, 2292–2297;
C. Olsen and P. A. Rowntree, J. Chem. Phys., 1998, 108,
3751–3764; H. Kondoh and H. Nozoye, J. Phys. Chem. B, 1998,
102, 2367–2372; K. A. Khan, N. Camillone, III and R. M. Osgood,
Jr., J. Chem. Phys., 1999, 110, 10527–10538.
4 J. H. Moon, Y.-H. La, J. Y. Shim, B. J. Hong, K. J. Kim,
T.-H. Kang, B. Kim, H. Kang and J. W. Park, Langmuir, 2000, 16,
2981–2984; A. Go¨lzha¨user, W. Eck, W. Geyer, V. Stadler,
T. Weimann, P. Hinze and M. Grunze, Adv. Mater., 2001, 13,
806–809; W. Geyer, V. Stadler, W. Eck, A. Go¨lzha¨user, M. Sauer,
T. Weimann, P. Hinze and M. Grunze, J. Vac. Sci. Technol., B,
2001, 19, 2732–2735; Y.-H. La, H. J. Kim, S. Maeng, Y. J. Jung,
T.-H. Kang, K. Ihm, K.-J. Kim, B. Kim and J. W. Park, Langmuir,
2002, 18, 301–303; Y.-H. La, H. J. Kim, S. Maeng, Y. J. Jung,
T.-H. Kang, K. Ihm, K.-J. Kim, B. Kim and J. W. Park, Langmuir,
2002, 18, 2430–2433; U. Schmelmer, R. Jordan, W. Geyer, W. Eck,
A. Go¨lzha¨user, M. Grunze and A. Ulman, Angew. Chem., Int. Ed.,
2003, 42, 559–563; A. Biebricher, A. Paul, P. Tinnefeld,
A. Go¨lzha¨user and M. Sauer, J. Biotechnol., 2004, 112, 97–107.
5 P. M. Mendes, S. Jacke, K. Critchley, J. Plaza, Y. Chen,
K. Nikitrin, R. E. Palmer, J. A. Preece, S. D. Evans and
D. Fitzmaurice, Langmuir, 2004, 20, 3766–3768.
6 R. L. Graham, C. D. Bain, H. A. Biebuyck, P. E. Laibinis and
G. M. Whitesides, J. Phys. Chem., 1993, 97, 9456–9464; E. Fryman,
H. Cohen, R. Maoz and J. Sagiv, Langmuir, 1997, 13, 5089–5106;
W. J. Dressick, C. S. Dulcey, S. L. Brandow, H. Witschi and
P. F. Neeley, J. Vac. Sci. Technol., A, 1999, 17, 1432–1440;
K. Heister, M. Zharnikov, L. S. O. Johansson, A. Ulman and
Z. Grunze, Langmuir, 2001, 17, 8–11.
31 B. Dordi, H. Scho¨nherr and G. J. Vancso, Langmuir, 2003, 19,
5780–5786.
32 E. K. Euranto, The chemistry of carboxylic acids and esters, ed.
S. Patai, Wiley-Interscience Publishers, New York, ch. 11, 1969,
pp. 505–588.
33 J. March, Advanced organic chemistry: reactions, mechanisms and
structure, Wiley-Interscience Publishers, London, 4th edn, ch.10,
1992, pp. 378–381.
7 T. K. Kim, M. Yang, R. D. Peters, B. H. Sohn and P. F. Nealey,
J. Phys. Chem. B, 2000, 104, 7403–7410; Y.-H. La, Y. J. Jung,
H. J. Kim, T.-H. Kang, K. Ihm, K.-J. Kim, B. Kim and J. W. Park,
Langmuir, 2003, 19, 4390–4395; M. Zharnikov, P. A. Shaporenko,
A. Go¨lzha¨user and A. Scholl, J. Phys. Chem. B, 2005, 109,
5168–5174; P. M. Mendes, M. Belloni, M. Ashworth, C. Hardy,
K. Nikitin, D. Fitzmaurice, K. Critchley, S. Evans and J. A. Preece,
ChemPhysChem, 2003, 4, 884–888.
34 R. Kluger and V. De Stetano, J. Org. Chem., 2000, 65, 214–219.
35 S. T. Plummer and P. W. Bohn, Langmuir, 2002, 18, 4142–4149;
T. Sehayek, A. Vaskevich and I. Rubinstein, J. Am. Chem. Soc.,
2003, 125, 4718–4719.
36 E. E. Foos, A. W. Snow, M. E. Twigg and M. G. Ancona, Chem.
Mater., 2002, 14, 2401–2408.
8 S. L. Brandow, M.-S. Chen, R. Aggarwal, C. S. Dulcey,
J. M. Calvert and W. J. Dressick, Langmuir, 1999, 15,
5429–5432; K. Lee, F. Pan, G. T. Carrol, N. J. Turro and
J. T. Koberstein, Langmuir, 2004, 20, 1812–1818; K. Critchley,
J. P. Jeyadevan, H. Fukushima, M. Ishida, T. Shimoda,
R. J. Bushby and S. D. Evans, Langmuir; K. Critchley, L. Zhang,
H. Fukushima, M. Ishida, T. Shimoda, R. J. Bushby and S. D. Evans,
J. Phys. Chem. B, 2006, 110, 17167–17174.
37 C. D. Bain, E. B. Troughton, Y.-T. Tao, J. Evall, G. M. Whitesides
and R. G. Nuzzo, J. Am. Chem. Soc., 1989, 111, 321–335.
This journal is ß The Royal Society of Chemistry 2007
J. Mater. Chem., 2007, 17, 5097–5110 | 5109