468
S. Cheng et al. / Carbohydrate Research 343 (2008) 462–469
1.13, 1.27, 1.29 (9s, 9 · 3H, 9CH3), 2.00, 2.02, 2.03, 2.07,
2.08 (5s, 5 · 3H, 5Ac), 2.81 (dd, 1H, J 4.1, 13.0 Hz, H-18
of oleanolic acid), 3.10 (br s, 1H), 3.26 (dd, 1H, J 4.3,
11.3 Hz, H-3 of oleanolic acid), 3.67–3.58 (m, 2H),
3.90–3.79 (m, 3H), 4.18–4.04 (m, 3H), 4.41 (dd, 1H, J
4.2, 11.9 Hz, H-5IV), 4.54–4.45 (m, 1H, H-5III), 4.65–
4.61 (m, 2H), 5.00–4.87 (m, 4H), 5.25–5.13 (m, 4H),
5.34–5.29 (m, 3H), 5.63–5.51 (m, 4H, H-2III, H-2V,
H-4I, H-4V), 5.70–5.65 (m, 2H, H-3IV, H-4III), 5.73
(dd, 1H, J 3.2, 10.2 Hz, H-3V), 5.82 (dd, 1H, J 3.5,
10.1 Hz, H-3III), 7.23–8.20 (m, 45H, 9Ph). 13C NMR
(100 MHz, CDCl3): d 175.2, 170.16, 170.14, 169.9,
169.3, 168.8, 165.8, 165.79, 165.70, 165.48, 165.42,
165.36, 165.23, 165.06, 164.93, 142.0, 133.4, 133.36,
133.26, 133.226, 133.10, 133.00, 132.9, 132.8, 129.88,
129.85, 129.79, 129.73, 129.70, 129.61, 129.54, 129.27,
129.24, 129.22, 129.18, 129.08, 128.51, 128.42, 128.39,
128.36, 128.33, 128.24, 128.17, 128.14, 103.5, 100.1,
98.5, 97.5, 92.1, 89.5, 77.22, 74.14, 73.9, 73.8, 72.96,
72.91, 72.14, 71.87, 71.80, 71.36, 71.10, 70.52, 70.01,
69.60, 69.36, 68.79, 68.04, 67.56, 67.24, 62.31, 61.16,
55.67, 47.64, 46.70, 45.81, 41.74, 41.05, 39.31, 39.29,
39.21, 38.77, 36.77, 33.74, 32.94, 31.65, 30.54, 29.66,
28.02, 27.86, 26.01, 25.56, 23.47, 23.40, 22.87, 22.59,
21.09, 20.65, 20.63, 20.58, 20.55, 20.54, 18.14, 17.41,
17.00, 16.54, 15.50. Anal. Calcd for C132H142O39: C,
67.39; H, 6.08. Found: C, 67.71; H, 6.15. MALDI-
TOF-MS: calcd for C132H142O39: 2351 [M]+; found,
2373.8 [M+Na]+.
38.9, 26.8, 39.5, 56.0, 18.5, 18.6, 33.0, 39.8, 48.0, 36.9,
23.7, 42.0, 28.2, 23.3, 46.9, 41.6, 46.1, 30.7, 33.9, 32.4,
27.9, 17.0, 15.6, 17.4, 26.0, 23.6. MALDITOF-MS:
calcd for C59H96O25: 1204 [M]+; found, 1226.6
[M+Na]+.
Acknowledgement
This work was supported in partial by NNSF of China
(Projects 20621703 and 20572128).
Supplementary data
Supplementary data associated with this article can be
References
1. Kalinin, V. I.; Silchenko, A. S.; Avilov, S. A.; Stonik,
V. A.; Smirnov, A. V. Phytochem. Rev. 2005, 4, 221–
236.
2. Kalinowska, M.; Zimowski, J.; Paczkowski, C.; Wojcie-
chowski, Z. A. Phytochem. Rev. 2005, 4, 237–257.
3. Park, J. D.; Rhee, D. K.; Lee, Y. H. Phytochem. Rev.
2005, 4, 159–175.
4. Lanzotti, V. Phytochem. Rev. 2005, 4, 95–110.
5. Waller, G. R.; Yamasaki, K. Saponins Used in Traditional
and Modern Medicine; Plenum Press: New York, 1996,
and references cited therein.
6. (a) Bing, F.-H.; Zhang, G. B. Hubei J. Tradit. Chin. Med.
2005, 27, 48–49; (b) Bing, F.-H.; Yi, Y.-D.; Zhang, G. B.
J. Chin. Pharm. Univ. 2005, 36, 338–341.
3.13. 3-O-[a-L-Rhamnopyranosyl-(1!2)-b-D-xylopyran-
osyl]oleanolic acid 28-O-[a-L-rhamnopyranosyl-(1!4)-b-
D-glucopyranosyl-(1!6)-b-D-glucopyranosyl] ester (1)
Compound 28 (400 mg, 0.17 mmol) was dissolved in an-
hyd 2:1 CH2Cl2–MeOH (30 mL), and then 1.0 M
NaOMe in MeOH (0.4 mL) was added at 0 ꢁC. The mix-
ture was stirred at rt for 7 h, at the end of which time
TLC (2:1:0.5 n-BuOH–EtOH–H2O) indicated that all
starting materials were consumed. The solution was
neutralized with ion-exchange resin (H+), and then
filtered and concentrated. The residue was purified on
a Bio-Gel P2 column using H2O as eluent, and the
desired fractions were combined and freeze dried to
7. Zhao, L.; Chen, W.-M.; Fang, Q.-C. Planta Med. 1991,
57, 572–574.
8. (a) Yu, B.; Xie, J.; Deng, S.; Hui, Y. J. Am. Chem. Soc.
1999, 121, 12196–12197; (b) Randolph, J. T.; Danishefsky,
S. J. J. Am. Chem. Soc. 1995, 117, 5693–5700; (c)
Nishizawa, M.; Yamada, H. Synlett 1995, 785–793; (d)
Deng, S.; Yu, B.; Hui, Y. Tetrahedron Lett. 1998, 39,
6511–6514; (e) Deng, S.; Yu, B.; Lou, Y.; Hui, Y. J. Org.
Chem. 1999, 64, 202–208; (f) Yu, B.; Zhang, Y.; Tang, P.
Eur. J. Org. Chem. 2007, 2007, 5145–5161.
9. (a) Du, Y.; Gu, G.; Wei, G.; Hua, Y.; Linhardt, R. J. Org.
Lett. 2003, 5, 3627–3630; (b) Gu, G.; Du, Y.; Linhardt, R.
J. J. Org. Chem. 2004, 69, 5497–5500.
10. Zhang, M.; Du, Y.; Kong, F. Carbohydr. Res. 2001, 330,
319–324.
11. Osborn, H. M. I.; Brome, V. A.; Harwood, L. M.; Suthers,
W. G. Carbohydr. Res. 2001, 332, 157–166.
12. Zhang, Z.; Magnusson, G. Carbohydr. Res. 1996, 295,
41–55.
13. Yang, F.; Du, Y. Carbohydr. Res. 2003, 338, 495–502.
14. (a) Zhang, M., Thesis, Research Center for Eco-Environ-
mental Sciences, Chinese Academy of Sciences, 2001; (b)
Yang, F.; Hua, Y.; Du, Y. Carbohydr. Res. 2003, 338,
1313–1318.
25
afford 1 as an amorphous solid (197 mg, 96%): ½aꢁD
+8.6 (c 1, MeOH); 1H NMR (400 MHz, C6D5N): d
0.87 (m, 9H, 3CH3), 1.08 (s, 3H, CH3), 1.18 (s, 3H,
CH3), 1.22 (s, 3H, CH3), 1.23 (s, 3H, CH3), 1.69 (d,
3H, J 4.8 Hz, H-6III), 1.70 (d, 3H, J 5.4 Hz, H-6V),
3.20 (m, 1H, H-3 of oleanolic acid), 4.82 (d, 1H, J
7.3 Hz, H-1IV), 4.98 (d, 1H, J 7.8 Hz, H-1I), 5.85 (br s,
1H, H-1III), 6.23 (d, 1H, J 7.8 Hz, H-1II), 6.53 (br s,
1H, H-1V). 13C NMR (100 MHz, C6D5N): d 176.4,
144.0, 122.8, 106.0, 104.8, 102.6, 101.8, 95.6, 88.4,
79.5, 78.6, 78.1, 78.0, 77.8, 77.1, 76.4, 75.3, 75.3, 74.0,
73.9, 72.7, 72.5, 72.3, 71.4, 70.7, 69.7, 69.1, 66.9, 61.2,
15. Liu, M. Z.; Fan, H. N.; Guo, Z. W.; Hui, Y. Z. Carbohydr.
Res. 1996, 290, 233–237.