isobutyraldehyde and ketene acetal 19 (Table 1). For the
construction of the OXB catalysts, the amino acids valine,
phenylalanine, and tryptophane were used. In initial experi-
ments, only the γ-addition products were isolated in 32-
44% yield (entries 1-3). While the use of OXB 3 only
generated racemic mixtures of 2, the OXBs 4 and 5 gave
enantioselectivities between 72 and 74%, independent of the
catalyst concentration.
Table 1. Enantioselective VMAR with Isobutyraldehyde and
Ketene Acetal 1 Catalyzed by OXBa
In order to suppress the competing pathway of carbonyl
activation through cationic silicon species,10 which would
result in racemic products (Scheme 2), isopropyl alcohol was
γ-product 2
Scheme 2. OXB-Activated Aldehyde vs Si+-Activated
entrya OXB (mol %) additive
γ/R
yieldc,d (%) eee (%)
Aldehyde
1
2
3
4b
5b
6b
7b,f
8b,f
9b,f
3 (20/100)
4 (20/100)
5 (20/100)
3 (20)
4 (20)
5 (20)
5 (20)
5 (50)
5 (100)
99:<1
99:<1
99:<1
99:<1
99:<1
99:<1
99:<1
99:<1
99:<1
38
44
32
31
46
32
44
63
75
0
72
74
0
83
96
96
97
98e,g
i-PrOH
i-PrOH
i-PrOH
i-PrOH
i-PrOH
i-PrOH
a 1.0 equiv of aldehyde and 1.2 equiv of ketene acetal 1. b 1.2 equiv of
additive. c Isolated yield after chromatography. d Additionally 3% racemic
TBS-protected γ-product. e Determined by (+)-Eu(hfc)3.11 f By simulta-
neous addition of the starting materials and the additive via syringe pump.
g Determined by chiral GC on TBS-protected compound.
used as a nucleophile. When the reaction was carried out
with isopropyl alcohol and 20 mol % of 5 (entries 5 and 6,
Table 1) an increase in enantioselectivity up to 96% was
observed, albeit in moderate chemical yields.
To improve the unexpected low yields, careful optimiza-
tion of the reaction conditions was required. Higher yields
were observed by simultaneous addition of the starting
materials and the additive via syringe pump. The use of
stoichiometric amounts of OXB 5 further improved the yield
up to 75% with concomitant increase of the enantioselectivity
to 98% ee (entry 9). On the other hand, changing the solvent
to EtCN or CH2Cl2 did not improve the yields.
The resulting configuration is consistent with the proposed
transition state for OXB-catalyzed aldol-type reactions
(Figure 1),8a,12 for which the observed configuration is based
on shielding of the aldehyde’s si-face through the indole
moiety. In our case, the initial theory based configurational
assignment was independently confirmed by the Mosher
method.13
acid based oxazaborolidinones7 should promote the VMAR
of ester-derived ketene acetals with high enantioselectivities.
One of the major advantages of oxazaborolidinones com-
pared to other chiral Lewis acids is their readily available
access from sulfonamides of R-amino acids and boranes.
Their valuable contribution to asymmetric synthesis was
demonstrated by applications of the Yamamoto8a and
Kiyooka8b protocol in Lewis acid catalyzed Mukaiyama aldol
reactions. In particular, applications with B-phenyloxazaboro-
lidinones were very effective in obtaining high yields and
selectivities.
Herein, we report the enantioselective vinylogous Mu-
kaiyama aldol reaction of O,O-silyl ketene acetals promoted
by B-phenyloxazaborolidinones (OXB). Our initial studies
to optimize the reaction conditions were performed using
(4) For applications of the vinylogous aldol reaction in the syntheses of
natural products, see: (a) Kru¨ger, J.; Carreira, E. M. Tetrahedron Lett. 1998,
39, 7013. (b) Evans, D. A.; Carter, P. H.; Carreira, E. M.; Prunet, J. A.;
Charette, A. B.; Lautens, M. J. Angew. Chem., Int. Ed. 1998, 37, 2354. (c)
Evans, D. A.; Carter, P. H.; Carreira, E. M.; Charette, A. B.; Prunet, J. A.;
Lautens, M. J. Am. Chem. Soc. 1999, 121, 7540. (d) Brennan, C. J.;
Campagne, J. M. Tetrahedron Lett. 2001, 42, 5195. (e) Bluet, G.; Campagne,
J. M. Synlett 2000, 221. (f) Snider, B. B.; Song, F. B. Org. Lett. 2001, 3,
1817. (g) Paterson, I.; Davies, R. D. M.; Heimann, A. C.; Marquez, R.;
Meyer, A. Org. Lett. 2003, 5, 4477. (h) Paterson, I.; Florence, G. J.;
Heimann, A. C.; Mackay, A. C. Angew. Chem., Int. Ed. 2005, 44, 1130.
(5) Shirokawa, S.-i.; Kamiyama, M.; Nakamura, T.; Okada, M.; Nakazaki,
A.; Hosokawa, S.; Kobayashi, S. J. Am. Chem. Soc. 2004, 126, 13604.
(6) Christmann, M.; Kalesse, M. Tetrahedron Lett. 2001, 42, 1269.
(7) (a) Takasu, M.; Yamamoto, H. Synlett 1990, 194. (b) Sartor, D.;
Saffrich, J.; Helmchen, G. Synlett 1990, 197.
Next, we investigated the scope and limitations using
different aldehydes (Table 2). At this point, it should be
(9) Hoffman, R. V.; Kim, H. O. J. Org. Chem. 1991, 56, 1014.
(10) (a) Wang, X.; Adachi, S.; Iwai, H.; Takatsuki, H.; Fujita, K.; Kubo,
M.; Oku, A.; Harada, T. J. Org. Chem. 2003, 68, 10046. (b) Carreira, E.
M.; Roberti, A. S. Tetrahedron Lett. 1994, 35, 4323. (c) Hassfeld, J.;
Christmann, M.; Kalesse, M. Org. Lett. 2001, 3, 3561.
(11) (a) Yeh, H. J. C.; Balani, S. K.; Yagi. H.; Greene, R. M. E.; Sharma,
N. D.; Boyd, D. R.; Jerina, D. M. J. Org. Chem. 1986, 51, 5439. (b)
Sweeting, L. M.; Crans, D. C.; Whitesides, G. M. J. Org. Chem. 1987, 52,
2273.
(12) (a) Corey, E. J.; Loh, T.-P. J. Am. Chem. Soc. 1991, 113, 8966. (b)
Corey, E. J.; Loh, T.-P. Tetrahedron Lett. 1993, 34, 3979. (c) Corey, E. J.;
Guzman-Perez, A.; Loh, T.-P. J. Am. Chem. Soc. 1994, 116, 3611.
(13) (a) Dale, J. A.; Dull, D. L.; Mosher, H. S. J. Org. Chem. 1969, 34,
2543. (b) Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem.
Soc. 1991, 113, 4092.
(8) (a) Ishihara, K.; Kondo, S.; Yamamoto, H. J. Org. Chem. 2000, 65,
9125. (b) Kiyooka, S.-I.; Hena, M. A.; Yabukami, T.; Murai, K.; Goto, F.
Tetrahedron Lett. 2000, 41, 7511.
5638
Org. Lett., Vol. 9, No. 26, 2007