9118
B. E. Stephens, F. Liu / Tetrahedron Letters 48 (2007) 9116–9119
6. Friedrich, K.; Fraser-Reid, B. J. Carbohydr. Chem. 1994,
13, 631–640.
7. Baer, H. H.; Rank, W. Can. J. Chem. 1969, 47, 2811–2818.
8. Mieczkowski, J.; Jurczak, J.; Chmielewski, M.; Zamojski,
A. Carbohydr. Res. 1977, 56, 180–182.
9. Harris, J. M.; O’Doherty, G. A. Tetrahedron Lett. 1999,
41, 183–187.
10. (a) Domon, D.; Fujiwara, K.; Murai, A.; Kawai, H.;
Suzuki, T. Tetrahedron Lett. 2005, 46, 8285–8288; (b)
Bussolo, V. D.; Caselli, M. A.; Pineschi, M.; Crotti, P.
Org. Lett. 2002, 4, 3695–3698.
either 13 or 15 prior to this report. The use of DBU,
which is necessary in the HWE reaction to generate
the phosphonate ylid in situ, also provided an ancillary
advantage of promoting the lactonisation step that
would otherwise require much higher temperatures to
proceed as reported in the synthesis of 16 using the Wit-
tig reaction. A conformational analysis was performed
on the enone ester precursors 13 and 15.26 These two
esters exhibited comparable distances (difference within
˚
1 A) between the nucleophilic oxygen centre and the
11. Dulcos, R. I. Chem. Phys. Lipids 2001, 111, 111–138.
electrophilic carbonyl carbon, without the indication
of any conformation bias that would significantly
enhance the lactonisation in either case. This supports
indirectly the likely kinetic advantage of lactonisation
in the presence of an amidine base.
´
12. Figueroa-Perez, S.; Schmidt, R. R. Carbohydr. Res. 2000,
328, 95–102.
13. Zimmermann, P.; Schmidt, R. R. Liebigs Ann. Chem.
1988, 663–667.
14. Kiso, M.; Nakamura, A.; Nakamura, J.; Tomita, Y.;
Hasegawa, A. J. Carbohydr. Chem. 1986, 5, 335–340.
15. Gros, E. G.; Deulofeu, V. J. Org. Chem. 1964, 29, 3647–
3654.
In summary, a three-step, enantiospecific conversion of
D-galactose on a preparative scale to a chiral synthon
1 is described for the first time. The enantio-purity of
the final product was secured by a spontaneous intramo-
lecular lactonisation of a Z-enone ester formed after a
Horner–Wadsworth–Emmons reaction.
16. Rochlin, E. U. S. Patent 6,469,148, 2000; Chem. Abstr.
2000, 133, 335434.
17. 2,4-O-benzylidene-D-threose (11). Based on the procedure
of Rochlin.16 A mixture of ZnCl2 (3.2 g, 23 mmol) and
redistilled benzaldehyde (9.3 mL, 92 mmol) was mechan-
ically stirred for 30 min under a gentle stream of dry
nitrogen. To the resulting off-white slurry were added
anhydrous D-galactose (4.0 g, 22 mmol) and more redis-
tilled benzaldehyde (8.1 mL, 77 mmol), and this mixture
was vigorously stirred for a further 24 h. Unreacted D-
galactose was removed by filtration and the residue
washed with redistilled benzaldehyde (3 mL). The com-
bined filtrate and washings were diluted with diethyl ether
(8 mL) and petroleum ether (11 mL), then extracted with
ice-cold water (20 mL then 3 · 10 mL). A solution of
K2CO3 (5.1 g, 37 mmol) in water (6.8 mL) was used to
adjust the pH of the combined aqueous extracts to 9–10,
and the thick white precipitate (ZnCO3) was filtered off
and washed thoroughly with water (80 mL). After washing
the filtrate with CHCl3 (10 mL) and petroleum ether
(10 mL), the resulting solution of crude 10 (Rf = 0.32, 25%
ethanol in toluene) was buffered with K2HPO4Æ3H2O
(1.5 g, 6.5 mmol) and KH2PO4 (610 mg, 3.5 mmol) and
vigorously stirred during the portionwise addition of
NaIO4 (5.3 g in 500 mg portions over 3 h, 25 mmol). The
pH was kept in the range 7.0–7.5 by the addition of
aqueous KOH (20%) and the formation of 11 was
monitored by TLC (Rf = 0.64, 25% ethanol in toluene).
Once complete, the reaction mixture was lyophilised. The
orange residue was suspended in dry THF and filtered.
After thoroughly washing the residue with dry THF, the
combined extracts were dried over MgSO4, filtered and
evaporated at reduced pressure (8 Torr, 35 ꢁC) to afford
crude 11 (2.36 g, 8.4 mmol, 38%) as a yellow foam: 1H
NMR (400 MHz, CDCl3) d 10.0 (s, 0.05H), 9.67 (s, 1H),
9.26 (s, 0.2H), 7.60–7.30 (m, 60H). The remainder of the
spectrum was extremely complex with, for instance, at
least six broad singlets in the benzylic region (d 5.7–5.5).
18. Rhee, J. U.; Bliss, B. A.; RajanBabu, T. V. J. Am. Chem.
Soc. 2003, 125, 1492–1493.
Acknowledgement
This work is supported by an Australian Research
Council Discovery Grant to F.L. (ARC-DP0665068).
References and notes
1. Initial isolation and synthesis: (a) Argoudelis, A. D.;
Zieserl, J. F. Tetrahedron Lett. 1966, 8, 1965–1969; (b)
Lesage, S.; Perlin, A. S. Can. J. Chem. 1978, 56, 2889–
2896; (c) Murayama, T.; Sugiyama, T.; Yamashita, K.
Agric. Biol. Chem. 1986, 50, 1923–1924.
2. Recent reviews: (a) de Fatima, A.; Modolo, L. V.;
Conegero, L. S.; Pilli, R. A.; Ferreira, C. V.; Kohn, L.
K.; de Carvalho, J. E. Curr. Med. Chem. 2006, 13, 3371–
3384; (b) Mondon, M.; Gesson, J.-P. Curr. Org. Synth.
2006, 3, 41–75; (c) Zhao, G.; Wu, B.; Wu, X. Y.; Zhang,
Y. Z. Mini-Rev. Org. Chem. 2005, 2, 333–353; (d)
Mereyala, H. B.; Joe, M. Curr. Med. Chem: Anti-Cancer
Agents 2001, 1, 293–300.
3. Initial review: (a) Ito, S.; Kodama, M. Heterocycles 1976,
4, 595–624; A recent example: (b) Park, H. S.; Yodo, N.;
Fukaya, H.; Aoyagi, Y.; Takeya, K. Tetrahedron 2004, 60,
171–177.
4. Recent examples: (a) Krishna, P. R.; Reddy, P. S.;
Narsingam, M.; Sateesh, B.; Sastry, G. N. Synlett 2006,
4, 595–599; (b) Zhao, G.-L.; Liao, W.-W.; Cordova, A.
Tetrahedron Lett. 2006, 47, 4929–4932; (c) Sanki, A. K.;
Pathak, T. Tetrahedron 2003, 59, 7203–7214.
5. Recent examples: (a) Stecko, S.; Pasniczek, K.; Jurczak,
M.; Urbanczyk-Lipkowska, Z.; Chmielewski, M. Tetra-
hedron: Asymmetry 2007, 18, 1085–1093; (b) Pasniczek,
K.; Jurczak, M.; Solecka, J.; Urbanczyk-Lipkowska, Z.;
Chmielewski, M. J. Carbohydr. Chem. 2007, 26, 195–211;
(c) Panfil, I.; Urbanczyk-Lipkowska, Z.; Chmielewski, M.
Pol. J. Chem. 2005, 79, 239–249; (d) Pasniczek, K.; Socha,
D.; Jurczak, M.; Frelek, J.; Suszczynska, A.; Urbanczyk-
Lipkowska, Z.; Chmielewski, M. J. Carbohydr. Chem.
2003, 22, 613–629; (e) Dirat, O.; Kouklovsky, C.; Lang-
lois, Y. S.; Lesot, P.; Courtieu, J. Tetrahedron: Asymmetry
1999, 10, 3197–3207.
19. Fengler-Veith, M.; Schwardt, O.; Kautz, U.; Kra¨mer, B.;
Ja¨ger, V. Org. Synth. 2002, 78, 123–128.
20. Kiso, M.; Nakamura, A.; Tomita, Y.; Hasegawa, A.
Carbohydr. Res. 1986, 158, 101–111.
21. Schmidt, R. R.; Zimmermann, P. Tetrahedron Lett. 1986,
27, 481–484.
22. (a) Ando, K. Tetrahedron Lett. 1995, 36, 4105–4108; (b)
Ando, K. J. Org. Chem. 1997, 62, 1934–1939; (c) Ando, K.
J. Org. Chem. 1999, 64, 8406–8408; (d) Ando, K.; Oishi,