Page 5 of 6
Journal of the American Chemical Society
strain energy as [5]CPP (111 kcal mol-1 versus 119 kcal mol-1)
(Scheme S8). We attribute the high strain energy of 18 to unfa-
AUTHOR INFORMATION
1
2
3
4
5
6
7
8
Corresponding Author
vorable steric interactions between ortho-ortho groups forced into
close proximity with one another due to the rigid geometry of
such a small macrocycle. Finally, reductive aromatization of 18
afforded 3, which is 5 kcal mol-1 less strained than its penultimate
intermediate (111 kcal mol-1 106 kcal mol-1) (Scheme S9). We
anticipate that this second-generation approach will prove to be
promising methodology towards the synthesis of members in the
[n]cyclophenacene family.
*E-mail: rjasti@uoregon.edu
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
Financial support was provided by the National Science
Foundation (CHE-1255219), the Sloan Foundation, the Camille
and Henry Dreyfus Foundation, and generous startup funds from
the University of Oregon. MRG thanks Vertex Pharmaceuticals
for a graduate research fellowship. HRMS data were obtained at
the Biomolecular Mass Spectrometry Core of the Environmental
Health Sciences Core Center at Oregon State University (NIH
P30ES000210). Mr. Evan Darzi is acknowledged for the synthesis
of 5.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Scheme 5. Evaluation of the Origins of Strain Energy in 1
– 3
REFERENCES
(1) (a) Schröder, A.; Mekelburger, H.-B.; Vögtle, F. Top. Curr. Chem.
1994, 172, 179; (b) Tahara, K.; Tobe, Y. Chem. Rev. 2006, 106, 5274; (c)
Eisenberg, D.; Shenhar, R.; Rabinovitz, M. Chem. Soc. Rev. 2010, 39,
2879; (d) Evans, P. J.; Jasti, R. Top. Curr. Chem. 2013, 349, 249.
(2) Scott, L. T. Angew. Chem. Int. Ed. 2003, 42, 4133.
(3) Kohnke, F. H.; Slawin, A. M. Z.; Stoddart, J. F.; Williams, D. J.
Angew. Chem. Int. Ed. 1987, 26, 892.
(4) (a) Ashton, P. R.; Isaacs, N. S.; Kohnke, F. H.; Slawin, A. M. Z.;
Spencer, C. M.; Stoddart, J. F.; Williams, D. J. Angew. Chem. Int. Ed.
1988, 27, 966; (b) Ashton, P. R.; Brown, G. R.; Isaacs, N. S.; Giuffrida,
D.; Kohnke, F. H.; Mathias, J. P.; Slawin, A. M. Z.; Smith, D. R.;
Stoddart, J. F.; Williams, D. J. J. Am. Chem. Soc. 1992, 114, 6330; (c)
Girreser, U.; Giuffrida, D.; Kohnke, F. H.; Mathias, J. P.; Philp, D.;
Stoddart, J. F. Pure Appl. Chem. 1993, 65, 119.
(5) (a) Kammermeier, S.; Jones, P. G.; Herges, R. Angew. Chem. Int.
Ed. 1996, 35, 2669; (b) Kammermeier, S.; Herges, R. Angew. Chem. Int.
Ed. 1996, 35, 417; (c) Kammermeier, S.; Jones, P. G.; Herges, R. Angew.
Chem. Int. Ed. 1997, 36, 2200; (d) Deichmann, M.; Näther, C.; Herges, R.
Org. Lett. 2003, 5, 1269.
(6) (a) Cory, R. M.; McPhail, C. L. Tetrahedron Lett. 1996, 37, 1987;
(b) Cory, R. M.; McPhail, C. L.; Dikmans, A. J.; Vittal, J. J. Tetrahedron
Lett. 1996, 37, 1983; (c) Wolf Dietrich, N.; Dieter, L.; Maribel, A.;
Schlüter, A. D. Chem. Eur. J. 2003, 9, 2745; (d) Stuparu, M.; Gramlich,
V.; Stanger, A.; Schlüter, A. D. J. Org. Chem. 2007, 72, 424; (e) Mihaiela,
S.; Dieter, L.; Heinz, R.; Schlüter, A. D. Eur. J. Org. Chem. 2007, 2007,
88; (f) Chagit, D.; Alexander, E.; Walter, A.; Amnon, S.; Mihaiela, S.;
Schlüter, A. D. Chem. Eur. J. 2008, 14, 1628; (g) Iyoda, M.; Kuwatani,
Y.; Yamauchi, T.; Oda, M. J. Chem. Soc., Chem. Commun. 1988, 65; (h)
Diercks, R.; Vollhardt, K. P. C. J. Am. Chem. Soc. 1986, 108, 3150; (i)
Mohler, D. L.; Vollhardt, K. P. C.; Stefan, W. Angew. Chem. Int. Ed.
1990, 29, 1151.
CONCLUSION
In conclusion, we have developed a reductive aromatiza-
tion/ring-closing metathesis sequence for the synthesis of aro-
matic belt fragments. Most significantly, we have demonstrated
that the RCM reaction can be carried out on highly strained sys-
tems without intervening acid-catalyzed rearrangements or unde-
sirable oxidative processes that have plagued previous synthetic
approaches. In addition, we also report an allyl isomerization
strategy as an efficient method to introduce sensitive styrenyl
functionality required for the RCM reactions. Our campaign to-
wards the total synthesis of several elusive [n]cyclophenacene
targets is well underway in our laboratory and will be reported in
due course.
(7) Scholl, R.; Meyer, K. Chem. Ber. 1932, 65, 902.
(8) (a) King, B. T.; Kroulik, J.; Robertson, C. R.; Rempala, P.; Hilton,
C. L.; Korinek, J. D.; Gortari, L. M. J. Org. Chem. 2007, 71, 5067; (b)
Zhai, L.; Shukla, R.; Rathore, R. Org. Lett. 2009, 11, 3474; (c) Dössel, L.;
Gherghel, L.; Feng, X.; Müllen, K. Angew. Chem. Int. Ed. 2011, 50, 2540;
(d) Arslan, H.; Uribe-Romo, F. J.; Smith, B. J.; Dichtel, W. R. Chem. Sci.
2013, 4, 3973.
(9) (a) Nishiuchi, T.; Feng, X.; Enkelmann, V.; Wagner, M.; Müllen, K.
Chem. Eur. J. 2012, 18, 16621; (b) Golling, F. E.; Quernheim, M.;
Wagner, M.; Nishiuchi, T.; Müllen, K. Angew. Chem. Int. Ed. 2014, 53,
1525; (c) Quernheim, M.; Golling, F. E.; Zhang, W.; Wagner, M.; Räder,
H.-J.; Nishiuchi, T.; Müllen, K. Angew. Chem. Int. Ed. 2015, 54, 10341.
(10) Sisto, T. J.; Zakharov, L. N.; White, B. M.; Jasti, R. Chem. Sci.
2016, Advance Article. DOI: 10.1039/C5SC04218F.
ASSOCIATED CONTENT
Supporting Information
General synthetic details, NMR spectra, computational details,
optical spectra, and electrochemical characterization. This materi-
(11) (a) Nakamura, E.; Tahara, K.; Matsuo, Y.; Sawamura, M. J. Am.
Chem. Soc. 2003, 125, 2834; (b) Matsuo, Y.; Tahara, K.; Sawamura, M.;
Nakamura, E. J. Am. Chem. Soc. 2004, 126, 8725.
ACS Paragon Plus Environment