Introduced by Staudinger a century ago, ketenes are
remarkable for the diverse range of useful products from their
reactions.12 In line with our research of NHC-catalyzed
reactions,13 we proposed that NHCs may be able to attack
ketene to give a reactive zwitterion A and thus be potential
catalysts for the Staudinger reactions of ketenes with imines
to give â-lactams (eq 1).14,15
We were pleased to find that 10 mol % of NHC 4 could
catalyze the reaction of phenylethylketene (1a) with N-
tosylphenylimine (2a) to give the corresponding â-lactam
3a in high yield, while only a trace amount of 3a was
detected in the absence of the catalyst (eq 2).
First reported by Staudinger, the cycloaddition reaction
of ketenes with imines is a versatile and efficient route to
construct â-lactams.16 However, there are only a few
examples for the catalytic enantioselective Staudinger reac-
tions. Lectka et al. reported their pioneering work that the
quinine derivatives, as the nucleophilic catalysts, could
catalyze the reaction of ketenes with N-tosyl R-iminoesters
with high enantioselectivities.17 This strategy was advanced
by Fu et al. to the reaction of ketenes with N-tosyl and
N-triflyl imines to give cis- and trans-â-lactams, respectively,
using planar-chiral derivatives of 4-(dimethylamino)pyridine
as catalysts.18 In this communication, NHCs proved to be
efficient catalysts for the Staudinger reaction of ketenes with
not only N-tosyl but also N-tert-butoxycarbonyl (Boc) imines.
Initially, N,N′-bis(2,6-diisopropylphenyl)imidazol-2-ylidene
(4),19 a stable NHC, was tested for the Staudinger reaction.
This result prompted us to explore chiral NHCs for the
enantioselective Staudinger reaction (Table 1). Several
Table 1. Investigation of Chiral NHCs for the Staudinger
Reaction
yield
(%)b
ee
entry
2: Ar, R
NHCa
cis/transc (%)d
(11) (a) Connor, E. F.; Nyce, G. W.; Myers, M.; Mo¨ck, A.; Hedrick, J.
L. J. Am. Chem. Soc. 2001, 124, 914. (b) Grasa, G. A.; Kissling, R. M.;
Nolan, S. P. Org. Lett. 2002, 4, 3583. (c) Nyce, G. W.; Lamboy, J. A.;
Connor, E. F.; Waymouth, R. M.; Hedrick, J. L. Org. Lett. 2002, 4, 3587.
(d) Suzuki, Y.; Yamauchi, K.; Muramatsu, K.; Sato, M. Chem. Commun.
2004, 2770. (e) Movassaghi, M.; Schmidt, M. A. Org. Lett. 2005, 7, 2453.
(f) Song, J. J.; Tan, Z.; Refes, J. T.; Gallou, F.; Yee, N. K.; Senanayake, C.
H. Org. Lett. 2005, 7, 2193. (g) Wu, J.; Sun, X.; Ye, S.; Sun, W. Tetrahedron
Lett. 2006, 47, 4813. (h) Thomson, J. E.; Rix, K.; Smith, A. D. Org. Lett.
2006, 8, 3785.
1
2
3
4
5
6
7
8
2b: 2-furyl, Ts
2b: 2-furyl, Ts
2b: 2-furyl, Ts
2b: 2-furyl, Ts
2b: 2-furyl, Ts
2b: 2-furyl, Ts
2c: 4-ClC6H4, Ts
2d: 4-ClC6H4, Cbz 8b
2e: 4-ClC6H4, Boc
2e: 4-ClC6H4, Boc
5
6
6
7
8a
8b
8b
93
99
99
59
99
98
97
53
68
72
55:45
62:38
78:22
55:45
50:50
67:33
36:64
60:40
75:25
75:25
-38e
42
63
-9e
58
83
19
89
95
(12) (a) Tidwell, T. T. Ketenes, 2nd ed.; John Wiley & Sons: Hoboken,
NJ, 2006. (b) Tidwell, T. T. Angew. Chem., Int. Ed. 2005, 44, 5778. (c)
Orr, R. K.; Calter, M. A. Tetrahedron 2003, 59, 3545.
9
10f
8b
8b
96
(13) He, L.; Jian, T.-Y.; Ye, S. J. Org. Chem. 2007, 72, 7466.
(14) For the biological activity of â-lactams, see: (a) Chemistry and
Biology of â-Lactam Antibiotics; Morin, R. B., Gorman, M., Eds.; Academic
Press: New York, 1982; Vols. 1-3. (b) Burnett, D. A. Curr. Med. Chem.
2004, 11, 1873. (c) Buynak, J. D. Curr. Med. Chem. 2004, 11, 1951. (d)
Niccolai, D.; Tarsi, L.; Thomas, R. J. Chem. Commun. 1997, 2333.
(15) For the synthesis and application of â-lactams, see: (a) Alcaide,
B.; Almendros, P.; Aragoncillo, C. Chem. ReV. 2007, 107, 4437. (b) Dhawan,
R.; Dghaym, R. D.; Syr, D. J.; Arndtsen, B. A. Org. Lett. 2006, 8, 3927.
(c) Zhao, L.; Li, C.-J. Chem. Asian J. 2006, 1, 203. (d) Ye, M.-C.; Zhou,
J.; Tang, Y. J. Org. Chem. 2006, 71, 3576. (e) Shintani, R.; Fu, G. C. Angew.
Chem., Int. Ed. 2003, 42, 4082. (f) Lo, M. M.-C.; Fu, G. C. J. Am. Chem.
Soc. 2002, 124, 4572.
(16) (a) Staudinger, H. Justus Liebigs Ann. Chem. 1907, 356, 51. (b)
Palomo, C.; Aizpurua, J. M.; Ganboa, I.; Oiarbide, M. Curr. Med. Chem.
2004, 11, 1837. (c) Palomo, C.; Aizpurua, J. M.; Ganboa, I.; Oiarbide, M.
Eur. J. Org. Chem. 1999, 3223. (d) Jiao, L.; Liang, Y.; Xu, J. J. Am. Chem.
Soc. 2006, 128, 6060.
(17) (a) Taggi, A. E.; Hafez, A. M.; Wack, H.; Young, B.; Drury, W. J.,
III; Lectka, T. J. Am. Chem. Soc. 2000, 122, 7831. (b) Taggi, A. E.; Hafez,
A. M.; Wack, H.; Young, B.; Ferraris, D. F.; Lectka, T. J. Am. Chem. Soc.
2002, 124, 6626. (c) France, S.; Shah, M. H.; Weatherwax, A.; Wack, H.;
Roth, J. P.; Lectka, T. J. Am. Chem. Soc. 2005, 127, 1206. (d) France, S.;
Weatherwax, A.; Taggi, A. E.; Lectka, T. Acc. Chem. Res. 2004, 37, 592.
(18) (a) Lee, E. C.; Hodous, B. L.; Bergin, E.; Shih, C.; Fu, G. C. J.
Am. Chem. Soc. 2005, 127, 11586. (b) Hodous, B. L.; Fu, G. C. J. Am.
Chem. Soc. 2002, 124, 1578. (c) Fu, G. C. Acc. Chem. Res. 2004, 37, 542.
a NHCs were generated in situ from the precursors 5-8 with 1 equiv
base of t-BuOK (entries 1 and 2) or Cs2CO3 (entries 3-10). b Isolated yield.
1
c Determined by H NMR of the reaction mixture. d Enantiomeric excess
of the cis-isomer. e Enantiomers with opposite absolute stereochemistry were
obtained. f 10 mol % of NHC was used.
reported chiral NHC precursors 5-720 were found to be
efficient catalysts for the reaction of ketene 1a and N-tosyl
2-furylimine (2b), but low to moderate enantioselectivities
were observed (entries 1-4). Triazolium salts 8a and 8b,
with bulky diphenyl(trialkylsilyloxy)methyl substituent, were
then designed and conveniently synthesized from L-pyro-
glutamic acid (Scheme 1). Both 8a and 8b catalyzed the
(19) Arduengo, A. J., III; Krafczyk, R.; Schmutzler, R. Tetrahedron 1999,
55, 14523.
(20) (a) Kerr, M. S.; De Alaniz, J. R.; Rovis, T. J. Org. Chem. 2005,
70, 5725. (b) Enders, D.; Niemeier, O.; Balensiefer, T. Angew. Chem., Int.
Ed. 2006, 45, 1463. (c) Knight, R. L.; Leeper, F. J. J. Chem. Soc., Perkin
Trans. 1 1998, 1891.
278
Org. Lett., Vol. 10, No. 2, 2008