T. Katagiri et al. / Tetrahedron Letters 49 (2008) 233–237
237
5. Abe, M.; Inoue, D.; Matsunaga, K.; Ohizumi, Y.; Ueda, H.; Asano,
T.; Murakami, M.; Sato, Y. J. Cell. Physiol. 2002, 190, 109.
6. Fujiwara, K.; Naka, J.; Katagiri, T.; Sato, D.; Kawai, H.; Suzuki, T.
Bull. Chem. Soc. Jpn. 2007, 80, 1173.
7. Ando, K.; Oishi, T.; Hirama, M.; Ohno, H.; Ibuka, T. J. Org. Chem.
2000, 65, 4745.
8. Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974.
9. Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155.
10. Burke, S. D.; Ng, R. A.; Morrison, J. A.; Alberti, M. J. J. Org. Chem.
1998, 63, 3160.
From This Work
20 21
OH
E
D
25
OH
OH
O
O
HH
H
H
15
HO
O
C
A
O
6
O
B
1
31
O
H
H
O
9
Me
O
F
Me
11. Because the use of Me3SiCl according to the standard procedure gave
36
Me
a
significant amount of a by-product due to the [2,3]-Wittig
1
rearrangement, MeSiCl3 was used to suppress the side reaction.
12. Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1,
953.
Fig. 5. Predicted partial relative stereochemistry of 1.
13. Bal, B. S.; Childers, W. E., Jr.; Pinnick, H. W. Tetrahedron 1981, 37,
2091.
14. Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull.
Chem. Soc. Jpn. 1979, 52, 1989.
15. Although the precursor secoic acids for 5a,b having an intact DE-ring
could be synthesized from 2a and 2b, the final macrocyclization step
gave only oligomeric side products.
NMR comparison of 1 with these model compounds.
Further studies toward determination of the full absolute
configuration of 1 by total synthesis are in progress in this
laboratory.
16. Crystal data of 5a: C17H24O6, M 324.37, orthorhombic P212121 (No.
˚
˚
˚
Acknowledgments
19), a = 5.140(1) A, b = 16.891(4) A, c = 18.332(5) A, V =
1591.7(7) A , Dc (Z = 4) = 1.354 g/cm3, T = 153 K, l = 1.02 cmꢀ1
.
3
˚
The final R value is 0.034 for 2436 independent reflections with
I > 2rI and 209 parameters. Crystal data of 5b: C17H24O6, M 324.37,
We are grateful to Professor Makoto Sasaki and Profes-
sor Masato Oikawa (Graduate School of Life Sciences,
Tohoku University) for helpful discussions. We also thank
Mr. Kenji Watanabe and Dr. Eri Fukushi (GC–MS and
NMR Laboratory, Graduate School of Agriculture,
Hokkaido University) for the measurements of mass spec-
tra. This work was supported by a Global COE Program
(Project No. B01: Catalysis as the Basis for Innovation in
Materials Science) and a Grant-in-Aid for Scientific
Research from the Ministry of Education, Culture, Sports,
Science, and Technology of Japanese Government.
˚
˚
orthorhombic P212121 (No. 19), a = 5.249(3) A, b = 9.302(5) A,
3
c = 34.16(2) A, V = 1667.7(1) A , Dc (Z = 4) = 1.292 g/cm3, T =
153 K, l = 0.97 cmꢀ1. The final R value is 0.068 for 951 independent
reflections with I > 3rI and 209 parameters. Crystallographic data
(excluding structure factors) of 5a and 5b have been deposited with
the Cambridge Crystallographic Data Center as supplementary
publication numbers CCDC 664790 and 664791, respectively. Copies
of the data can be obtained, free of charge, on application to CCDC,
12 Union Road, Cambridge CB2 1EZ, UK [fax: +44 0 1223 336033,
˚
˚
17. There is still a slight discrepancy between the JH20–H21 values of model
5a (7.5 Hz) and 1 (9.4 Hz). The discrepancy may be attributable to the
difference in the rigidity between the simple dicarboxylate chain of the
model and the complex chain of 1 which includes several inflexible
parts, such as an oxane and a spirocyclic acetal.
18. The terms ‘H20,H21-gauche’ and ‘H20,H21-anti’ are used for conve-
nience. ‘H20,H21-gauche’ and ‘H20,H21-anti’ indicate that the
conformational relationship between H20 and H21 is gauche or anti,
respectively.
References and notes
1. (a) Murakami, M.; Makabe, K.; Yamaguchi, K.; Konosu, S.;
Wa¨lchli, M. R. Tetrahedron Lett. 1988, 29, 1149; (b) Murakami,
M.; Makabe, K.; Yamaguchi, K.; Konosu, S.; Wa¨lchli, M. R.
Abstracts of Papers, 28th Symposium on the Chemistry of Natural
Products; Sendai; Organizing Committee of the 28th Symposium on
19. The C15–C25 distances of the H20,H21-gauche conformer of 5a and
the H20,H21-anti conformer of 5b were estimated from simple
Chem3D models based on the X-ray coordinates of 5a and 5b. Each
model conformer was obtained as follows: the dicarboxylate chain
was removed from each coordinate, and the C20–C21 bond was
simply rotated until the desired conformer was given. The remaining
H20,H21-gauche conformers of 5a and 5b are expected to exist with
relatively high conformer population due to the relatively short
C15–C25 distances approximated (6.79 A in 5a and 6.99 A in 5b).
20. Karplus, M. J. Chem. Phys. 1959, 30, 11.
21. Haasnoot, C. A. G.; De Leeuw, F. A. A. M.; Altona, C. Tetrahedron
1980, 36, 2783–2792.
the Chemistry of Natural Products: Sendai, 1987;
p 309; (c)
Murakami, M.; Okita, Y.; Matsuda, H.; Okino, T.; Yamaguchi, K.
Phytochemistry 1998, 48, 85; See also: (d) Terao, K.; Ito, E.;
Murakami, M.; Yamaguchi, K. Toxicon 1989, 27, 269.
2. Hsia, M. H.; Morton, S. L.; Smith, L. L.; Beauchesne, K. R.; Huncik,
K. M.; Moeller, P. D. R. Harmful Algae 2006, 5, 290.
3. (a) Furukawa, K.-I.; Sakai, K.; Watanabe, S.; Maruyama, K.;
Murakami, M.; Yamaguchi, K.; Ohizumi, Y. J. Biol. Chem. 1993,
268, 26026; (b) Yasuda, M.; Nakatani, K.; Matsunaga, K.; Muraka-
mi, M.; Momose, K.; Ohizumi, Y. Eur. J. Pharmacol. 1998, 346, 119;
(c) Matsunaga, K.; Nakatani, K.; Murakami, M.; Yamaguchi, K.;
Ohizumi, Y. J. Pharmacol. Exp. Ther. 1999, 291, 1121.
˚
˚
22. Matsumori, N.; Kaneno, D.; Murata, M.; Nakamura, H.; Tachibana,
K. J. Org. Chem. 1999, 64, 866.
4. Mizuno, K.; Nakatani, N.; Ohizumi, Y.; Ito, E.; Murakami, M.;
Yamaguchi, K. J. Pharm. Pharmacol. 1998, 50, 645.