C O M M U N I C A T I O N S
of disubstituted olefins proceed in high yield but are less selective
unless a sterically demanding group, such as a silyl substituent, is
present (entry 12). The findings in entries 9-12 of Table 2 involve
modified complex 9b, since in such cases, use of 9a leads to lower
selectivities; 1,4-dienes 3i and 11a,b,c are formed in 65%, 56%,
78%, and 90% ee, respectively, when 9a is employed. Reactions
in entries 1-8 proceed with identical degrees of asymmetric
induction when 9a or 9b are used.
bearing versatile alkyl halide substituents13 can be synthesized (19
in 92% ee). Tris(homoallylic) ether 20 and allylsilane 21 are
obtained in 93% and 89% ee, respectively, and exclusively as E
alkene isomers. Allylether 22 is, in contrast, formed with >98% Z
selectivity (80% ee).14 In the latter case, the initial hydroalumination
is likely directed by the proximal Lewis basic, albeit sterically
demanding, t-butoxy ether to generate a cis-vinylaluminum.
The utility of this method is showcased by the one-pot, gram-
scale transformation in eq 1. Treatment of 1-octyne with DIBAL-
H, addition of a mixture of 9a (0.5 mol %) and CuCl2‚2H2O (1
mol %, from a commercial bottle), followed by the addition of 1.42
grams of allylic phosphate 1g, results in the formation of 3g in
94% yield and 92% ee (>98% E). The Cu-catalyzed three-
component enantioselective process was performed on a bench top
without the need to resort to glovebox techniques.
Noteworthy are enantioselective syntheses of acyclic 1,4-diene
12 (91% ee) and bicyclic diene 13 (87% ee; 69% ee with 9a); these
transformations illustrate that catalytic AAA can be used with vinyl
bromides and cyclic alkenes. Other alkynes may be employed to
access products 14-17, bearing different vinyl groups (Table 3;
>98% SN2′ and E selectivity). Alkynes with sizable substituents
can be utilized: 1,4-diene 17 (entry 4, Table 3) is obtained in 93%
yield and 88% ee (82% ee with 9a).
Acknowledgment. Support was provided by the NIH (Grant
GM-47480), NSF (Grant CHE-0715138), Schering-Plough, and
Bristol-Myers Squibb (fellowships to Y.L. and M.K.B., respec-
tively). We thank P. Paredes for valuable experimental assistance.
Supporting Information Available: Experimental procedures and
spectral and analytical data for all products. This material is available
Table 3. Cu-Catalyzed AAA of Vinylaluminum Reagent Derived
from Various Terminal Alkynesa
References
(1) (a) Yorimitsu, H.; Oshima, K. Angew. Chem., Int. Ed. 2005, 44, 4435-
4439. (b) Hoveyda, A. H.; Hird, A. W.; Kacprzynski, M. A. Chem.
Commun. 2004, 1779-1785.
(2) Kacprzynski, M. A.; May, T. L.; Kazane, S. A.; Hoveyda, A. H. Angew.
Chem., Int. Ed. 2007, 46, 4554-4558.
(3) For Rh-catalyzed asymmetric conjugate additions of vinylboronates and
vinylzirconocenes, respectively, to enones, see: (a) Hayashi, T.; Yamasaki,
K. Chem. ReV. 2003, 103, 2829-2844. (b) Nicolaou, K. C.; Tang, W.;
Dagneau, P.; Faraoni, R. Angew. Chem., Int. Ed. 2005, 44, 3874-3879.
(4) For other catalytic AAA involving chiral NHC complexes, see: (a) Larsen,
A. O.; Leu, W.; Nieto-Oberhuber, C.; Campbell, J. E.; Hoveyda, A. H. J.
Am. Chem. Soc. 2004, 126, 11130-11131. (b) Van Veldhuizen, J. J.;
Campbell, J. E.; Giudici, R. E.; Hoveyda, A. H. J. Am. Chem. Soc. 2005,
127, 6877-6882. (c) Tominaga, S.; Oi, Y.; Kato, T.; An, D. K.; Okamoto,
S. Tetrahedron Lett. 2004, 45, 5585-5588. (d) Lee, Y.; Hoveyda, A. H.
J. Am. Chem. Soc. 2006, 128, 15604-15605.
yield
(%)c
ee
entry
R
NHC
product
(%)d
1
2
3
4
PhCH2
9b
9a
9a
9b
14
15
16
17
85
90
91
93
91
92
91
88
(cyclopent)CH2
cyclohex
t-Bu
a Conditions: 2 equiv of vinyl-Al reagent (vs substrate); under N2. b 1H
NMR analysis (400 MHz). c Yield after purification; all conversions >98%.
d By chiral HPLC (Supporting Information).
Additional attributes of the method are illustrated by preparation
of 18-22. Enantioselective synthesis of 18 demonstrates that
conjugated enynes can be utilized to access chiral dienes. Products
(5) An example of hydroalumination of an alkyne/Cu-catalyzed asymmetric
conjugate addition to â-methylcyclohexenone has been reported (73%
ee): Vuagnoux-d’Augustin, M.; Alexakis, A. Chem.sEur. J. 2007, 13,
9647-9662.
(6) (a) Falciola, C. A.; Tissot-Croset, K.; Alexakis, A. Angew. Chem., Int.
Ed. 2006, 45, 5995-5998. (b) Gillingham, D. G.; Hoveyda, A. H. Angew.
Chem., Int. Ed. 2007, 46, 3860-3864.
(7) Negishi, E.; Takahashi, T.; Baba, S. Org. Synth., Collect. 1993, 8, 295-
297.
(8) Lee, K. S.; Brown, M. K.; Hird, A. W.; Hoveyda, A. H. J. Am. Chem.
Soc. 2006, 128, 7182-7184.
(9) (a) Brown, M. K.; May, T. L.; Baxter, C. A.; Hoveyda, A. H. Angew.
Chem., Int. Ed. 2007, 46, 1097-1100. (b) Reference 2. (c) Reference 6b.
(10) When the precursor imidazolinium salt of 9a is used, 77% conversion is
observed (24 h, -15 °C) and 3a is formed in >98% ee (>98% E and
SN2′). There is, however, <2% conversion with the BF4‚imidazolinium
salt of 6.
(11) Huang, Z.; Negishi, E. Org. Lett. 2006, 8, 3675-3678.
(12) (a) Lipshutz, B. H.; Ellsworth, E. L. J. Am. Chem. Soc. 1990, 112, 7440-
7441. (b) Wipf, P.; Nunes, R. L. Tetrahedron 2004, 60, 1269-1279. (c)
Li, H.; Walsh, P. J. J. Am. Chem. Soc. 2005, 127, 8355-8361.
(13) For hydrolalumination of halogen-containing alkynes, see: Gardette, M.;
Jabri, N.; Alexakis, A.; Normant, J. F. Tetrahedron 1984, 40, 2741-
2750.
(14) For directed hydroalumination of propargylic t-butyl ethers, see: (a)
Alexakis, A.; Duffault, J. M. Tetrahedron Lett. 1988, 29, 6243-6246.
For a review on directed reactions, see: (b) Hoveyda, A. H.; Evans, D.
A.; Fu, G. C. Chem. ReV. 1993, 93, 1307-1370.
JA0782192
9
J. AM. CHEM. SOC. VOL. 130, NO. 2, 2008 447