SCHEME 1. Synthesis of Thiophen-3-one 4a4
Synthesis of Cyclic Thioethers through Tandem
C(sp3)-S and C(sp2)-S Bond Formations from
r,â′-Dichloro Vinyl Ketones
Kyungsoo Oh,* Hyunjung Kim, Francesco Cardelli,
Tamayi Bwititi, and Anna M. Martynow
Department of Chemistry and Chemical Biology,
Indiana UniVersity Purdue UniVersity Indianapolis,
Indianapolis, Indiana 46202
substituent at the C6-position are low yielding (8-36%). Due
to the shortage of synthetic routes to heterocycles containing a
thioether,5 we developed a facile synthesis of thiophen-3-ones
through tandem C(sp3)-S and C(sp2)-S bond formations from
the Friedel-Crafts acylation products, â-chloro vinyl ketones.4
Herein, we report the extension of our methodology to the
synthesis of 6- to 8-membered cyclic thioether derivatives.
ReceiVed NoVember 15, 2007
From the outset of our synthesis, we reasoned that the “soft”
and “hard” nucleophilic character of sulfur would facilitate the
reaction with R,â′-dichloro vinyl ketones: via the intermolecular
alkylation with a sulfur nucleophile followed by intramolecular
Michael reaction/elimination, or intermolecular Michael reac-
tion/elimination followed by intramolecuar alkylation of the
pendent sulfur nucleophile.
Thus, in order to devise a unified synthetic pathway to access
5- to 8-membered heterocycles, we investigated double C-S
bond formations using R,â′-dichloro vinyl ketones 3a and a
source of sulfur. The generation of the required substrate 3a
was initially investigated by using the Friedel-Crafts acylation
of a chloroacetyl chloride-AlCl3 complex with terminal alkynes
1a.6 The R,â′-dichloro vinyl ketones 3a are routinely obtained
in high yields as a mixture of cis- and trans-stereoisomers (E:Z
) 1:1-20:1) depending on the reaction temperature.7
Next, we turned our attention to the identification of a suitable
sulfur nucleophile to induce the C-S bond formations. Initially
we screened a variety of sulfur nucleophiles (elemental sulfur
S8, thiourea, hydrogen sulfide, sodium sulfide, sodium hydro-
sulfide) in acidic and basic conditions with no success. After
further experimentation, it was found that sodium hydrosulfide
hydrate is the optimal source of sulfur to induce the desired
double C-S bond formation in acetone or in neat form.
The synthesis of 5- to 8-memebered cyclic thioethers 4 has
been achieved through a simple two-step sequence. The
present methodology utilizes the facile Friedel-Crafts acy-
lation of terminal alkynes 1 with acid chlorides 2 followed
by tandem C(sp3)-S and C(sp2)-S bond formations with
NaSH‚xH2O.
While the potential of sulfur heterocycles in synthetic
strategies has been widely recognized, heterocycles containing
a thioenol ether moiety have been a less-studied subject of
investigation. Conjugated cyclic thioenol ethers have been
proven as effective surrogates for unreactive cis-dienes in Diels-
Alder reactions1 as well as precursors for the synthesis of
substituted cyclopentenones through Ramberg-Ba¨cklund reac-
tions.2 More recently, Vedejs reported an internal 1,4-addition
of a tethered amine to dihydrothiopyran-4-one derivatives for
the synthesis of the 8-membered-ring system of the pyrrolizidine
alkaloid octonecine.3 In the course of synthesis of biotin and
its analogues, we utilized thiophen-3-one derivatives, cyclic
â-keto thioenol ethers, to a biotin core.4 Although Lebedev et
al. have described a two-step sequence to thiophen-3-ones from
a 2-(ethylsulfanyl)butanoyl fluoride‚BF3 complex with alkynes,
the preparation of acid fluoride‚BF3 complexes is not trivial.
Christoffers and Rosiak also recently reported the synthesis of
2,6-disubstituted 2,3-dihydrothiopyran-4-ones through double
conjugation of sulfide to enynones; this approach, however, was
confined to 6-membered heterocycles and substrates without a
(5) For selected thiophen-3-one examples, see: (a) Lebedev, M. V.;
Nenajdenko, V. G.; Balenkova, E. S. Synthesis 2001, 2124. (b) Chuburu,
F.; Lacombe, S.; Pfister-Guillouzo, G. J. Org. Chem. 1991, 56, 3445. (c)
Hunter, G. A.; McNab, H. J. Chem. Soc., Chem. Commun. 1990, 375. (d)
Cheikh, A. B.; Dhimane, H.; Pommelet, J. C.; Chuche, J. Tetrahedron Lett.
1988, 29, 5919. (e) Camici, L.; Ricci, A.; Taddei, M. Tetrahedron Lett.
1986, 27, 5155. Selecteted thiopyran-4-one examples, see: (f) Rosiak, A.;
Christoffers, J. Tetrahedron Lett. 2006, 47, 5095. (g) Bi, X.; Dong, D.; Li,
Y.; Liu, Q.; Zhang, Q. J. Org. Chem. 2005, 70, 10886. (h) Samuel, R.;
Nair, S.; Asokan, C. V. Synlett 2000, 1804. (i) Rule, N. G.; Detty, M. R.;
Kaeding, J. E.; Sinicropi, J. A. J. Org. Chem. 1995, 60, 1665. (j) Vedejs,
E.; Eberlein, T. H.; Mazur, D. J.; McClure, C. K.; Perry, D. A.; Ruggeri,
R.; Schwartz, E.; Stults, J. S.; Varie, D. L.; Wilde, R. G.; Wittenberger, S.
J. Org. Chem. 1986, 51, 1556. (k) Vedejs, E.; Perry, D. A.; Wilde, R. G.
J. Am. Chem. Soc. 1986, 108, 2985. (l) Kansal, V. K.; Taylor, R. J. K. J.
Chem. Soc. Perkin Trans. 1, 1984, 703. Selected benzo[b]thiepinone
derivatives, see: (m) Bendorf, H. D.; Colella, C. M.; Dixon, E. C.; Marchetti,
M.; Matukonis, A. N.; Musselman, J. D.; Tiley, T. A. Tetrahedron Lett.
2002, 43, 7031. (n) Tamura, Y.; Takebe, Y.; Mukai, C.; Ikeda, M. J. Chem.
Soc., Perkin Trans. 1 1981, 2978. (o) Kirby, N.; Reid, S. J. Chem. Soc.,
Chem. Commun. 1980, 150.
(1) (a) Ward, D. E.; Gai, Y. Can. J. Chem. 1997, 75, 681. (b) Ward, D.
E.; Nixey, T. E.; Gai, Y.; Hrapchak, M.; Abaee, M. S. Can. J. Chem. 1996,
74, 1418. (c) Ward, D. E.; Nixey, T. E. Tetrahedron Lett. 1993, 34, 947.
(2) (a) Jeffrey, S. M.; Sutherland, A. G.; Pyke, S. M.; Powell, A. K.;
Taylor, R. J. K. J. Chem. Soc., Perkin Trans. 1 1993, 2317. (b) Casy, G.;
Taylor, R. J. K. Tetrahedron 1989, 45, 455.
(3) Vedejs, E.; Galante, R.; Goekjian, P. J. Am. Chem. Soc. 1998, 120,
3613.
(4) Oh, K. Org. Lett. 2007, 9, 2973.
(6) Benson, W. R.; Pohland, A. E. J. Org. Chem. 1964, 29, 385.
(7) Assignment of alkene geometry by NMR, see: Martens, H.;
Hooranaert, G.; Toppet, S. Tetrahedron 1973, 29, 4241.
10.1021/jo702457t CCC: $40.75 © 2008 American Chemical Society
Published on Web 02/16/2008
2432
J. Org. Chem. 2008, 73, 2432-2434