August 2010
1025
6) Bartosz G., Clinica Chimica Acta, 368, 53—76 (2006).
7) Wardman P., Free Radic. Biol. Med., 43, 995—1022 (2007).
8) Halliwell A., Whiteman M., Br. J. Pharmacol., 142, 231—255 (2004).
9) Tarpey M. M., Wink D. A., Grisham M. B., Am. J. Physiol. Regul. In-
tegr. Comp. Physiol., 286, R431—R444 (2004).
10) Eckelman W. C., Rebaand R. C., Kelloff G. L., Drug Discov. Today,
13, 748—759 (2008).
11) Wada K., Fujibayashi Y., Tajima N., Yokoyama A., Nucl. Med. Biol.,
21, 901—904 (1994).
12) Fujibayashi Y., Tajima N., Wada K., Waki A., Sakahara H., Konishi
K., Yokoyama A., Nucl. Med. Biol., 24, 399—403 (1997).
13) Bormans G., Kilbourn M. R., J. Labelled Compd. Radiopharm., 36,
103—110 (1995).
dissolved in methanol (100 ml) and was injected onto the HPLC column
(Nacalai Tesque COSMOSIL 5C18-PAQ 4.5ϫ250 mm, MeOH/H2Oϭ40 : 60
(v/v) with 0.1% CF3COOH in both methanol and water which were bubbled
with nitrogen gas before hand, flow rate of 0.8 ml/min). The product fraction
was collected at a retention time of 80.1 min. The isolated radiochemical
yield of 125I-2 ranged from 3.6 to 32.8% (average of 18%) in a total prepara-
tion time of 150 min. The specific radioactivity was estimated to be in excess
of 0.14 GBq/mmol based on the UV absorbance detection limit of the HPLC
system used. Quality control HPLC showed a single radioactive peak and no
UV peaks, suggesting that the preparations were more than 98% chemically
and radiochemically pure. For formulation, the solvent of the HPLC fraction
was evaporated under reduced pressure and the radioactivity was dissolved
in 1% Tween-80-physiological saline containing 5% EtOH.
Solution Stability The formulated solution of 125I-2 was allowed to
stand at 0 °C and 37 °C. At various intervals from zero to 6 h, the samples
were withdrawn and analyzed for stability by analytical HPLC and radio-
TLC. HPLC analysis was performed using a COSMOSIL 5C18-AR-II col-
umn (250ϫ4.6 mm, Nacalai Tesque). The column was eluted with a gradient
of 0.1% CF3COOH in MeOH (A) and 0.1% CF3COOH in H2O (B) at
0.7 ml/min. The percentage of (A) was increased linearly to 100% over
45 min and maintained at that value for another 15 min. Under these condi-
tions 125I-2 was eluted at about 20.4 min. TLC analysis was performed under
a stream of nitrogen gas using Merck TLC aluminium backed sheets Sil-
icagel 60 RF-18 F254S; developing solvent; MeOH–H2O–CH3COOHϭ50 :
20 : 1 with 0.02% ascorbic acid (w/v), which was bubbled with nitrogen gas
beforehand; Rfϭ0.00—0.03 for 125IϪ ion and Rfϭ0.24—0.27 for 125I-2.
Tissue Distribution Studies in Normal Rats Normal male ICR mice
(6 weeks old, weighing 30—35 g), deprived of food 18 h prior to and during
the course of experiment, with free access to water, were used in this investi-
gation. The animals were intravenously injected through the tail vein with a
solution of 125I-2 (9.0—11.1 kBq, 100 ml, specific activity 0.2—0.6 kBq/
mmol) in 1% Tween-80-physiological saline containing 5% EtOH, immedi-
ately after HPLC purification. At pre-designated time points, the mice were
sacrificed by exsanguination under ether anesthesia. Blood was collected by
heart puncture and the tissues were harvested. Abdominal aorta and thora-
caorta samples were also collected. The radioactivity in the samples was
measured in a gamma counter (ALOKA, ARC-370) and the tissues were
weighed. The tissue uptake of the radioactivity was expressed as a percent-
age of the injected dose per gram of tissue (%ID/g of tissue) or a percentage
of the injected dose per organ (%ID/organ).
14) Gilissen C., Bormans G., de Groot T., Verbruggen A., J. Labelled
Compd. Radiopharm., 40, 491—502 (1998).
15) The Edaravone Acute Brain Infarction Study Group, Cerebrovasc.
Dis., 15, 222—229 (2003).
16) Watanabe T., Yuki S., Egawa M., Nishi H., J. Pharmacol. Exp. Ther.,
268, 1597—1604 (1994).
17) Kawai H., Nakai H., Suga M., Yuki S., Watanabe T., Saito K., J.
Pharmcaol. Exp. Ther., 281, 921—927 (1997).
18) Wu T.-W., Zeng L.-H., Wu J., Fung K.-P., Life Sci., 71, 2249—2255
(2002).
19) Tajima S., Soda M., Bando M., Enomoto M, Yamasawa H., Ohno S.,
Takada T., Suzuki E., Gejyo F., Sugiyama Y., Respirology, 13, 646—
653 (2008).
20) Watanabe Kazut., Watanabe Kazuh., Kuwahara T., Yamamoto Y., J.
Jpn. Oil Chem. Soc., 46, 797—808 (1997).
21) Watanabe Kazut., Watanabe Kazuh., Hayase T., Jpn. Pharmacol. Ther.,
25, 1699—1707 (1997).
22) Komatsu T., Nakai H., Takamatsu Y., Morinaka Y., Watanabe K., Shi-
moda A., Iida S., Drug Metab. Pharmacokin., 11, 451—462 (1996).
23) Komatsu T., Nakai H., Masaki K., Obata R., Nakai K., Iida S., Drug
Metab. Pharmacokin., 11, 463—480 (1996).
24) Garg P. K., Slade S. K., Harrison C. L., Zalutsky M. R., Nucl. Med.
Biol., 16, 669—673 (1989).
25) Hunsberger I. M., Shaw E. R., Fugger J., Ketcham R., Lednicer D., J.
Org. Chem., 21, 394—399 (1956).
26) Jansen M., Dannhardt G., Eur. J. Med. Chem., 38, 855—865 (2003).
27) Watanabe K., Morinaka Y., Iseki K., Watanabe T., Yuki S., Nishi H.,
Redox Rep., 8, 151—155 (2003).
28) Chegaev K., Cena C., Giorgis M., Rolando B., Tosco P., Bertinaria M.,
Fruttero R., Carrupt P.-A., Gasco A., J. Med. Chem., 52, 574—578
(2009).
29) Yamamoto Y., Kuwahara T., Watanabe K., Watanabe T., Redox Rep., 2,
333—338 (1996).
Acknowledgements Support for this study from the Asahi Glass Foun-
dation and the program for the Creation of Innovation Centers for Advanced
Interdisciplinary Research Areas from Special Coordination Funds for Pro-
moting Science and Technology (SCF) commissioned by the Ministry of Ed-
ucation, Culture, Sports, Science and Technology (MEXT) of Japan, is
gratefully acknowledged. The authors also thank Mr. Jintaek Kim for his
support in preparing this manuscript.
30) Ono S., Okazaki K., Sakurai M., Inoue Y., J. Phys. Chem. A, 101,
3769—3775 (1997).
31) Blois M. S., Nature (London), 181, 1199—1200 (1958).
32) Nakagawa H., Ohyama R., Kimata A., Suzuki T., Miyata N., Bioorg.
Med. Chem. Lett., 16, 5935—5942 (2006).
33) Kimata A., Nakagawa H., Ohyama R., Fukuchi T., Ohta S., Suzuki T.,
Miyata, N., J. Med. Chem., 50, 5053—5056 (2007).
34) Coenen H. H., Mertens J., Maziere B., “Radioiodination Reactions for
Radiopharmaceuticals,” Springer, The Netherland, 2006.
35) Ali H., van Lier J. E., Synthesis, 1996, 423—445 (1996).
36) Komatsu T., Masaki K., Nakai H., Jpn. Pharmacol. Ther., 25 (Suppl.
7), S1773—S1783 (1997).
References
1) Nemoto S., Takeda K., Yu Z.-X., Ferrans V. J., Finkel T., Mol. Cell.
Biol., 20, 7311—7318 (2000).
2) Valko M., Leibfritz D., Moncol J., Cronin M. T. D., Mazur M., Telser
J., Int. J. Biochem. Cell Biol., 39, 44—84 (2007).
3) Gutierrez J., Ballinger S. W., Darley-Usmarr V. M., Landar A., Cir.
Res., 99, 924—932 (2006).
4) Dreher D., Junod A. F., Eur. J. Cancer, 32A, 30—38 (1996).
5) Zweier J. L., Talukder M. A. H., Cardiovasc. Res., 70, 181—190
(2006).