6346 Journal of Medicinal Chemistry, 2008, Vol. 51, No. 20
Yamamoto et al.
parallels with tolerance and dependence. J. Pharmacol. Exp. Ther.
2005, 314, 1362–1369.
(58) Hyberts, S. G.; Goldberg, M. S.; Havel, T. F.; Wagner, G. The solution
structure of eglin c based on measurements of many NOEs and
coupling constants and its comparison with X-ray structures. Protein
Sci. 1992, 1, 736–751.
(38) Yamamoto, T.; Nair, P.; Davis, P.; Ma, S. W.; Navratilova, E.; Moye,
M.; Tumati, S.; Vanderah, T. W.; Lai, J.; Porreca, F.; Yamamura,
H. I.; Hruby, V. J. Design, Synthesis and Biological Evaluation of
Novel Bifunctional C-terminal Modified Peptides for δ/µ Opioid
Receptor Agonists and Neurokinin-1 Receptor Antagonists. J. Med.
Chem. 2007, 50, 2779–2786.
(59) Beechem, J. M.; Brand, L. Time-resolved fluorescence of proteins.
Annu. ReV. Biochem. 1985, 54, 43–71.
(60) Vivian, J. T.; Callis, P. R. Mechanisms of tryptophan fluorescence
shifts in proteins. Biophys. J. 2001, 80, 2093–2109.
(61) Raguz, M.; Brnjas-Kraljevic, J. Resolved fluorescence emission spectra
of PRODAN in ethanol/buffer solvents. J. Chem. Inf. Model 2005,
45, 1636–1340.
(62) Neidigh, J. W.; Fesinmeyer, R. M.; Prickett, K. S.; Andersen, N. H.
Exendin-4 and glucagon-like-peptide-1: NMR structural comparisons
in the solution and micelle-associated states. Biochemistry 2001, 40,
13188–13200.
(39) Yamamoto, T.; Nair, P.; Davis, P.; Ma, S. W.; Moye, S.; Largent,
T.; Vanderah, T. W.; Lai, J.; Porreca, F.; Yamamura, H. I.; Hruby,
V. J. Design, Structure-Activity Relationships and Biological
Evaluation of Novel Bifunctional C-terminal Modified Peptides for
δ/µ Opioid Receptor Agonists and Neurokinin-1 Receptor Antago-
nists. In 232nd ACS National Meeting, San Francisco, CA, 2006,
pp MEDI-7.
(63) Datar, P.; Srivastava, S.; Coutinho, E.; Govil, G. Substance P:
structure, function, and therapeutics. Curr. Top. Med. Chem. 2004,
4, 75–103.
(64) Lewis, R. T.; Macleod, A. M.; Merchant, K. J.; Kelleher, F.; Sanderson,
I.; Herbert, R. H.; Cascieri, M. A.; Sadowski, S.; Ball, R. G.;
Hoogsteen, K. Tryptophan-derived NK1 antagonists: conformationally
constrained heterocyclic bioisosteres of the ester linkage. J. Med.
Chem. 1995, 38, 923–933.
(65) Braunschweiler, L.; Ernst, R. R. Coherence Transfer by Isotropic
Mixing: Application of Proton Correlation Spectroscopy. J. Magn.
Reson. 1983, 53, 521–528.
(66) Davis, D. G.; Bax, A. Assignment of complex proton NMR spectra
via two-dimensional homonuclear Hartmann-Hahn spectroscopy. J. Am
Chem. Soc. 1985, 107, 2820–2821.
(67) Subramanian, S.; Bax, A. Generation of pure phase NMR subspectra
for measurement of homonuclear coupling constants. J. Magn. Reson.
1987, 71, 325–330.
(68) Rance, M. Improved techniques for homonuclear rotating-frame and
isotropic mixing experiments. J. Magn. Reson. 1987, 74, 557–564.
(69) Bax, A.; Davis, D. G. MLEV-17-based two-dimensional homonuclear
magnetization transfer spectroscopy. J. Magn. Reson. 1985, 65, 355–
360.
(70) Marion, D. W.; Wu¨thrich, K. Application of phase sensitive two-
dimensional correlated spectroscopy (COSY) for measurements of 1H-
1H spin-spin coupling constants in proteins. Biochem. Biophys. Res.
Commun. 1983, 113, 967–974.
(71) Kumar, A.; Ernst, R. R.; Wu¨thrich, K. A two-dimensional nuclear
Overhauser enhancement (2D NOE) experiment for the elucidation
of complete proton-proton cross-relaxation networks in biological
macromolecules. Biochem. Biophys. Res. Commun. 1980, 95, 1–6.
(72) Piotto, M.; Saudek, V.; Sklena´ød, V. Gradient-tailored excitation for
single-quantum NMR spectroscopy of aqueous solutions. J. Biomol.
NMR 1992, 2, 661–665.
(73) Press, W. H.; Vetterling, W. T.; Teukolsky, S. A. Numerical Recipes
in C. In The Art of Scientific ComputingCambridge University Press:
New York, 1988.
(74) Havel, T. F. An evaluation of computational strategies for use in the
determination of protein structure from distance constraints obtained
by nuclear magnetic resonance. Prog. Biophys. Mol. Biol. 1991, 56,
43–78.
(75) Weiner, S. J.; Kollman, P. A.; Case, D. A.; Singh, U. C.; Ghio, C.;
Alagona, G. S.; Profeta, J.; Weiner, P. A New Force Field for
Molecular Mechanical Simulation of Nucleic Acids and Proteins.
J. Am. Chem. Soc. 1984, 106, 765–784.
(76) Weiner, S. J.; Kollman, P. A.; Case, D. A. An all atom force field for
simulations of proteins and nucleic acids. J. Comput. Chem. 1986, 7,
230–252.
(40) Yamamoto, T.; Nair, P.; Vagner, J.; Davis, P.; Ma, S. W.; Navratilova,
E.; Moye, M.; Tumati, S.; Vanderah, T. W.; Lai, J.; Porreca, F.;
Yamamura, H. I.; Hruby, V. J. A Structure-Activity Relationship
Study and Combinatorial Synthetic Approach of C-Terminal Modified
Bifunctional Peptides That Are δ/µ Opioid Receptor Agonists and
Neurokinin 1 Receptor Antagonists. J. Med. Chem. 2008, 51, 1369–
1376.
(41) Braun, W.; Wider, G.; Lee, K. H.; Wuthrich, K. Conformation of
glucagon in a lipid-water interphase by 1H nuclear magnetic
resonance. J. Mol. Biol. 1983, 169, 921–948.
(42) Thornton, K.; Gorenstein, D. G. Structure of glucagon-like peptide
(7-36) amide in a dodecylphosphocholine micelle as determined by
2D NMR. Biochemistry 1994, 33, 3532–3539.
(43) Arora, A.; Abildgaard, F.; Bushweller, J. H.; Tamm, L. K. Structure
of outer membrane protein A transmembrane domain by NMR
spectroscopy. Nat. Struct. Biol. 2001, 8, 334–338.
(44) Karslake, C.; Piotto, M. E.; Pak, Y. K.; Weiner, H.; Gorenstein, D. G.
2D NMR and structural model for a mitochondrial signal peptide bound
to a micelle. Biochemistry 1990, 29, 9872–9878.
(45) Ying, J.; Ahn, J. M.; Jacobsen, N. E.; Brown, M. F.; Hruby, V. J.
NMR solution structure of the glucagon antagonist [desHis1, desPhe6,
Glu9]glucagon amide in the presence of perdeuterated dodecylphos-
phocholine micelles. Biochemistry 2003, 42, 2825–2835.
(46) Jacobsen, N. E.; Abadi, N.; Sliwkowski, M. X.; Reilly, D.; Skelton,
N. J.; Fairbrother, W. J. High-resolution solution structure of the
EGF-like domain of heregulin-alpha. Biochemistry 1996, 35, 3402–
3417.
(47) Porreca, F.; Heyman, J. S.; Mosberg, H. I.; Omnaas, J. R.; Vaught,
J. L. Role of mu and delta receptors in the supraspinal and spinal
analgesic effects of [D-Pen2, D-Pen5]enkephalin in the mouse.
J. Pharmacol. Exp. Ther. 1987, 241, 393–400.
(48) Porreca, F.; Mosberg, H. I.; Hurst, R.; Hruby, V. J.; Burks, T. F. Roles
of mu, delta and kappa opioid receptors in spinal and supraspinal
mediation of gastrointestinal transit effects and hot-plate analgesia in
the mouse. J. Pharmacol. Exp. Ther. 1984, 230, 341–348.
(49) Audigier, Y.; Mazarguil, H.; Gout, R.; Cros, J. Structure-activity
relationships of enkephalin analogs at opiate and enkephalin receptors:
correlation with analgesia. Eur. J. Pharmacol. 1980, 63, 35–46.
(50) Agnes, R. S.; Lee, Y. S.; Davis, P.; Ma, S. W.; Badghisi, H.; Porreca,
F.; Lai, J.; Hruby, V. J. Structure-activity relationships of bifunctional
peptides based on overlapping pharmacophores at opioid and chole-
cystokinin receptors. J. Med. Chem. 2006, 49, 2868–2875.
(51) Lee, Y. S.; Agnes, R. S.; Badghisi, H.; Davis, P.; Ma, S. W.; Lai, J.;
Porreca, F.; Hruby, V. J. Design and synthesis of novel hydrazide-
linked bifunctional peptides as delta/mu opioid receptor agonists and
CCK-1/CCK-2 receptor antagonists. J. Med. Chem. 2006, 49, 1773–
1780.
(77) Gough, C. A.; DeBolt, S. E.; Kollman, P. A. Derivation of fluorine
and hydrogen atom parameters using liquid simulations. J. Comput.
Chem. 1992, 13, 963–970.
(52) Lazaridis, T.; Mallik, B.; Chen, Y. Implicit solvent simulations of DPC
micelle formation. J. Phys. Chem. B 2005, 109, 15098–15106.
(53) Smith, L. J.; Bolin, K. A.; Schwalbe, H.; MacArthur, M. W.; Thornton,
J. M.; Dobson, C. M. Analysis of main chain torsion angles in proteins:
prediction of NMR coupling constants for native and random coil
conformations. J. Mol. Biol. 1996, 255, 494–506.
(54) Wagner, G.; Neuhaus, D.; Worgotter, E.; Vasak, M.; Kagi, J. H.;
Wuthrich, K. Nuclear magnetic resonance identification of “half-turn”
and 3(10)-helix secondary structure in rabbit liver metallothionein-2.
J. Mol. Biol. 1986, 187, 131–135.
Accessed February 2007.
(79) Boyd, N. D.; Kage, R.; Dumas, J. J.; Krause, J. E.; Leeman, S. E.
The peptide binding site of the substance P (NK-1) receptor localized
by a photoreactive analogue of substance P: presence of a disulfide
bond. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 433–737.
(80) Lorenzen, A.; Fuss, M.; Vogt, H.; Schwabe, U. Measurement of
guanine nucleotide-binding protein activation by A1 adenosine receptor
agonists in bovine brain membranes: stimulation of guanosine-5′-O-
(3-[35S]thio) triphosphate binding. Mol. Pharmacol. 1993, 44, 115–
123.
(55) Smith, D.; Griffin, J. F. Conformation of [Leu5]enkephalin from X-ray
diffraction: features important for recognition at opiate receptor.
Science 1978, 199, 1214–1216.
(56) Graham, W. H.; Carter, E. S., II.; Hicks, R. P. Conformational analysis
of Met-enkephalin in both aqueous solution and in the presence of
sodium dodecyl sulfate micelles using multidimensional NMR and
molecular modeling. Biopolymers 1992, 32, 1755–1764.
(57) Wilmot, C. M.; Thornton, J. M. Analysis and prediction of the different
types of beta-turn in proteins. J. Mol. Biol. 1988, 203, 221–232.
(81) Porreca, F.; Burks, T. F. Affinity of normorphine for its pharmacologic
receptor in the naive and morphine-tolerant guinea pig isolated ileum.
J. Pharmacol. Exp. Ther. 1983, 225, 688–693.
(82) Porreca, F.; LoPresti, D.; Ward, S. J. Opioid agonist affinity in the
guinea pig ileum and mouse vas deferens. Eur. J. Pharmacol. 1990,
179, 129–139.