C O M M U N I C A T I O N S
Figure 2. (A) Fluorescence emission titration of PyDPA (20 µM) upon ppGpp addition; Ex ) 344 nm, Em ) 470 nm. (B) Fluorescence emission titration
of PyDPA (20 µM) upon pppGpp addition; Ex ) 344 nm, Em ) 470 nm. (C) Fluorescence emission spectra of PyDPA upon the addition of 7 µM of each
nucleotide and PPi; Ex ) 344 nm. (D) Fluorescence emission intensity ratio (I470nm/I380nm) of PyDPA (20 µM) upon the addition of ppGpp, pppGpp, and
other nucleotides (each 7 µM). ppGpp and pppGpp are depicted on the graph, and the others are numbered in panel C. (E) Fluorescence emission of PyDPA
(20 µM) under a UV lamp (excitation wavelength ) 365 nm) upon the addition of ppGpp, pppGpp, ATP, and GTP (left to right, each 7 µM).
Supporting Information Available: Synthesis of PyDPA, Job’s
plot between PyDPA and (p)ppGpp, PPi competition experiment results
with (p)ppGpp, fluorescence emission titration of PyDPA with more
than 7.7 µM (p)ppGpp, experimental data for the detection of in vitro
ppGpp synthesis by extracted bacterial ribosomal complexes, experi-
mental data for the detection of internal ppGpp in the starved bacterial
cells. This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) (a) Cashel, M.; Gallant, J. Nature 1969, 221, 838. (b) Cashel, M.; Gentry,
D. R.; Hernandez, V. J.; Vinella, D. Escherichia coli and Salmonella:
Cellular and Molecular Biology, 2nd ed.; ASM Press: Washington, DC,
1996; Vol. 1, pp 1458-1496. (c) Braeken, K.; Moris, M.; Daniels, R.;
Figure 3. (A) Real-time fluorescent detection of in vitro ppGpp synthesis
Vanderleyden, J.; Michiels, J. Trends Microbiol. 2005, 14, 45. (d) Jain,
from ATP (4 mM) and GDP (2 mM) by extracted E. coli ribosomal
V.; Kumar, M.; Chatterji, D. J. Microbiol. 2006, 44, 1.
complexes. At regular intervals, the fluorescence of the reaction mixture
(2) (a) Magnusson, L. U.; Farewell, A.; Nystrom, T. Trends Microbiol. 2005,
was measured after dilution (×2000) in PyDPA (20 µM). Excitation
13, 236. (b) Artsimovitch, I.; Patlan, V.; Sekine, S.; Vassylyeva, M. N.;
wavelength ) 344 nm. (B) Changes in the fluorescence intensity at 470
Hosaka, T.; Ochi, K.; Yokoyama, S.; Vassylyev, D. G. Cell 2004, 117,
nm with time. X-axis: elapsed time (h), Y-axis: fluorescence intensity at
470 nm.
299. (c) Wang, J. D.; Sanders, G. M.; Grossman, A. D. Cell 2007, 128,
865. (d) Paul, B. J.; Berkmen, M. B.; Gourse, R. L. Proc. Natl. Acad.
Sci. U.S.A. 2005, 102, 7823. (e) Choy, H. E. J. Biol. Chem. 2000, 275,
6783.
Information). As shown in Figure 3B, excimer fluorescence at 470
nm gradually increased as 15 h elapsed; this implies that ppGpp
was synthesized in the reaction mixture. After 15 h, the fluorescence
at 470 nm decreased slowly as the synthesized ppGpp was degraded
by other factors of the bacterial ribosomal complex. These results
support the theories of in vitro ppGpp synthesis7 and degradation8
by the bacterial ribosomal complex.
PyDPA can also be used to detect ppGpp produced in the starved
bacterial cells.9 As shown in Figure S6, bacterial ppGpp can be
detected either by HPLC (UV absorption) or by PyDPA. However,
the fluorescent detection by PyDPA was much more selective and
sensitive than the HPLC method.
In summary, we have developed the first fluorescent chemosensor
(PyDPA) for the detection of (p)ppGpp, a bacterial and plant
alarmone. PyDPA can detect (p)ppGpp extremely selectively from
among other nucleotides or pyrophosphate in water by using pyrene-
excimer fluorescence. PyDPA was used for the real-time detection
of in vitro ppGpp synthesis by the E. coli ribosomal complex.
(3) (a) Fischer, M.; Zimmerman, T. P.; Short, S. A. Anal. Biochem. 1982,
121, 135. (b) Takahashi, K.; Kasai, K.; Ochi, K. Proc. Natl. Acad. Sci.
U.S.A. 2004, 101, 4320. (c) Saito, N.; Xu, J.; Hosaka, T.; Okamoto, S.;
Aoki, H.; Bibb, M. J.; Ochi, K. J. Bacteriol. 2006, 188, 4952.
(4) (a) Lee, D. H.; Kim, S. Y.; Hong, J.-I. Angew. Chem., Int. Ed. 2004, 43,
4777. (b) Lee, D. H.; Im, J. H.; Son, S. U.; Chung, Y. K.; Hong, J.-I. J.
Am. Chem. Soc. 2003, 125, 7752. (c) Kruppa, M.; Konig, B. Chem. ReV.
2006, 106, 3520. (d) Jang, Y. J.; Jun, E. J.; Lee, Y. J.; Kim, Y. S.; Kim,
J. S.; Yoon, J. J. Org. Chem. 2005, 70, 9603. (e) Ojida, A.; Mitooka, Y.;
Inoue, M.; Hamachi, I. J. Am. Chem. Soc. 2002, 124, 6256. (f) Leevy,
W. M.; Gammon, S. T.; Jiang, H.; Johnson, J. R.; Maxwell, D. J.; Jackson,
E. N.; Marquez, M.; Piwnica-Worms, D.; Smith, B. D. J. Am. Chem. Soc.
2006, 128, 16476.
(5) (a) Cho, H. K.; Lee, D. H.; Hong, J.-I. Chem. Commun. 2005, 1690. (b)
Kim, S. K.; Lee, S. H.; Lee, J. Y.; Lee, J. Y.; Bartsch, R. A; Kim. J. S.
J. Am. Chem. Soc. 2004, 126, 16499. (c) Nishizawa, S.; Kato, Y.; Teramae,
N. J. Am. Chem. Soc. 1999, 121, 9463. (d) Kim, J. S.; Choi, M. G.; Song,
K. C.; No, K. T.; Ahn, S.; Chang, S.-K. Org. Lett. 2007, 9, 1129.
(6) Because of the 2:1 binding mode, the excimer fluorescence of PyDPA
decreased over 7.7 µM of (p)ppGpp. See the Supporting Information.
(7) (a) Cashel, M. Methods in Molecular Genetics; Academic Press: New
York, 1994; Vol. 3, p 341. (b) Haseltine, W. A.; Block, R. Proc. Natl.
Acad. Sci. U.S.A. 1973, 70, 1564.
(8) (a) Sy, J. Proc. Natl. Acad. Sci. U.S.A. 1977, 74, 5529. (b) Heinemeyer,
E. A.; Richter, D. Proc. Natl. Acad. Sci. U.S.A. 1978, 75, 4180. (c)
Heinemeyer, E. A.; Richter, D. FEBS Lett. 1977, 84, 357.
Acknowledgment. This work was supported by the KRF (Grant
No. KRF-2006-312-C00592) and Seoul R&BD. This research was
also supported in part by the NICHD Intramural Research Program
at NIH and Chung grant. H.-W.R. is the recipient of the Seoul
Science Fellowship.
(9) (a) Pizer, L. I.; Merlie, J. P. J. Bacteriol. 1973, 114, 980. (b) Kuroda, A.;
Murphy, H.; Cashel, M.; Kornberg, A. J. Biol. Chem. 1997, 272, 21240.
JA0759139
9
J. AM. CHEM. SOC. VOL. 130, NO. 3, 2008 785