316
Organometallics 2008, 27, 316–319
Self-Assembly of a Nanoscopic Prism via a New Organometallic Pt3
Acceptor and Its Fluorescent Detection of Nitroaromatics
Sushobhan Ghosh and Partha Sarathi Mukherjee*
Inorganic and Physical Chemistry Department, Indian Institute of Sciences, Bangalore-560012, India
ReceiVed October 26, 2007
construction. A few 3D cages are known with the former
combination3 (where M ) bidentate acceptor and L ) tridentate
donor), while the latter combination (where M ) tridentate
acceptor and L ) bidentate donor) is very rare in the litera-
ture because of the difficulty in the synthesis of shape-selective
tridentate Pd/Pt acceptors.4 This prompted us to prepare a Pt3
organometallic planar acceptor 4,4′,4′′-tris[ethynyl-trans-
Pt(PEt3)2(NO3)]triphenylamine (M) as a shape-selective linker
toward the construction of a trigonal-prism (Scheme 1). Here,
we report the design and synthesis of a nanoscopic prism (1)
prepared by the self-assembly of M with a clip-type amide
containing the ligand 1,3-bis(3-pyridyl)isophthalic amide (L)
and the preliminary study of its fluorescent detection of
nitroaromatics, which are chemical signatures of many explo-
Summary: A nanoscale-sized cage with a trigonal prismatic
shape is prepared by coordination-driVen self-assembly of a
predesigned organometallic Pt3 acceptor with an organic clip-
type ligand. This trigonal prism is fluorescent and undergoes
efficient fluorescence quenching by nitroaromatics, which are
the chemical signatures of many explosiVes.
Self-assembly is the spontaneous association of either a few
or many chemical entities to form a larger aggregate under
thermodynamic control. With a careful and informed choice
of the starting materials, the resulting compounds can often
be predicted, and therefore, design strategies can be formu-
lated.1 Self-assembly via the directional bonding approach
is the most efficient way to the synthesis of designed
coordination assemblies. The major requirement for this
coordination driven self-assembly approach is the use of rigid
precursors of appropriate size and shape. Square planar Pt(II)
and Pd(II) have long been used as favorite metals in this area
because of their rigid coordination environment, and thus, it is
easy to control and predict the shapes and sizes of the final
assemblies.2 The most attractive feature of the metallasupramo-
lecular assemblies formed by the directional bonding approach
is the possibility of the introduction of functionality by
introducing required functional groups or by simply tuning the
structure. Of the various types of structures reported so far, 2D
assemblies dominated the literature. Three-dimensional cages2e
are relatively less compared to 2D assemblies because of the
difficulty in synthesis and isolation due to very high molecular
weight. M3L2 or M2L3 are the simple combinations for 3D cage
(3) (a) Mukherjee, P. S.; Das, N.; Stang, P. J. J. Org. Chem. 2004, 69,
3526. (b) Ghosh, S.; Mukherjee, P. S. Tetrahedron Lett. 2006, 47, 9297.
(c) Ghosh, S.; Mukherjee, P. S. Organometallics 2007, 26, 3362. (d) Ghosh,
S.; Turner, D.; Batten, S. R.; Mukherjee, P. S. Organometallics 2007, 26,
3252. (e) Radhakrishnan, U.; Schweiger, M.; Stang, P. J. Org. Lett. 2001,
3, 3141. (f) Kuehl, C. J.; Yamamoto, T.; Seidel, R.; Stang, P. J. Org. Lett.
2002, 4, 913. (g) Yang, H. B.; Ghosh, K.; Das, N.; Stang, P. J. Org. Lett.
2006, 8, 3991. (h) Yang, H. B.; Ghosh, K.; Northrop, B. H.; Stang, P. J.
Org. Lett. 2007, 9, 1561. (i) Yang, H. B.; Ghosh, K.; Arif, A. M.; Stang,
P. J. J. Org. Chem. 2006, 9, 9464.
(4) Chi, K. W.; Addicott, C.; Kryeschenko, Y. K.; Stang, P. J. J. Org.
Chem. 2004, 69, 964.
(5) (a) Synthesis of 4,4′,4′′-Tris[trans-Pt(PEt3)2I(ethynylphenyl)]amine.
First tri[p-ethynylphenyl]amine was prepared (see Supporting Information).
To a 100 mL round bottom shlenk flask were added trans-diiodobis(tri-
ethylphosphine)platinum (750 mg, 1.094 mmol) and tri(p-ethynylpheny-
l)amine (98.9 mg, 0.312 mmol). Then 25 mL of dry, degassed toluene and
10 mL of dry diethyl amine were added under nitrogen. The solution was
stirred for 10 min at room temperature before 25 mg of CuI was added in
one portion. After 16 hr at room temperature, a small amount of
diethylammonium iodide started precipitating out of the solution. The solvent
was removed under vacuum, the resulting yellow residue was separated by
column chromatography on silica gel with a solvent mixture of benzene/
hexane (2:1) to obtain the product in 64% yield. Anal. Calc. (%) C ) 36.23;
H ) 5.17; N ) 0.70. Found: C ) 36.38; H ) 5.37; N ) 1.01. 1H NMR
(CDCl3, 400 MHz): δ 7.26 (d, 6H, ArH), 6.93 (d, 6H, ArH), 2.2 (q, 36H,
* To whom correspondence should be addressed. Tel: 91-80-2293-3352.
Fax: 91-80-2360-1552. E-mail: psm@ipc.iisc.ernet.in.
(1) (a) Vickers, M. S.; Beer, P. D. Chem. Soc. ReV. 2007, 2, 211. (b)
Leininger, S.; Olenyuk, B.; Stang, P. J. Chem. ReV. 2000, 100, 853. (c)
Nehete, U. N.; Anantharaman, G.; Chandrasekhar, V.; Murugavel, R.;
Roesky, H. W.; Vidovic, D.; Magull, J.; Samwer, K.; Sass, B. J. Angew.
Chem., Int. Ed. 2004, 43, 3832. (d) Ghosh, A. K.; Ghoshal, D.; Ribas, J.;
Mostafa, G.; Ray Chaudhuri, N. Cryst. Growth Des. 2006, 6, 36. (e)
Maurizot, V.; Yoshizawa, M.; Kawano, M.; Fujita, M. J. Chem. Soc., Dalton
Trans. 2006, 2750. (f) Pathak, B.; Pandian, S.; Hosmane, N. S.; Jemmis,
E. D. J. Am. Chem. Soc. 2006, 128, 10915. (g) Chai, J.; Jancik, V.; Singh,
S.; Zhu, H.; He, C.; Roesky, H. W.; Schmidt, H.-G.; Noltemeyer, M.;
Hosmane, N. S. J. Am. Chem. Soc. 2005, 127, 7521. (h) Oh, M.; Carpenter,
G. B.; Sweigart, D. A. Angew. Chem., Int. Ed. 2002, 41, 3650. (i) Oh, M.;
Carpenter, G. B.; Sweigart, D. A. Angew. Chem., Int. Ed. 2003, 42, 2025.
(j) Chandrasekhar, V.; Thirumoorthi, R. Organometallics 2007, 26, 4515.
(k) Shin, R. Y. C.; Tan, G. K.; Koh, L. L.; Vittal, J. J.; Goh, L. Y.; Webster,
R. D. Organometallics 2005, 24, 539. (l) Mondal, K. C.; Song, Y.;
Mukherjee, P. S. Inorg. Chem. 2007, 46, 9736. (m) Ghosh, S.; Mukherjee,
P. S J. Chem. Soc., Dalton Trans. 2007, 2542.
-CH2), 1.2 (t, 54H, -CH3). 31P NMR (CDCl3, 400 MHz): δ 8.57 (s, 1JPt-P
)
2874 Hz). The iodide derivative was treated with AgNO3 to obtain the nitrate
product (M). (Yield: 11.7 mg, 65%.) Anal. Calc. (%) C ) 40.16; H )
5.73; N ) 3.12. Found: C ) 40.36; H ) 5.51; N ) 3.32. 1H NMR (CDCl3,
400 MHz): δ 6.84 (d, 6H, ArH), 7.01 (d, 6H, ArH), 1.9 (q, 36H, ArH),
1
1.15 (t, 54H, ArH). 31P NMR (CDCl3, 400 MHz): δ 20.1 (s, JPt-P)3064
Hz). IR (Nujol): 2121, 1487, 1384, 1274, 1034 cm-1. Preparation of 1.
To a stirred solution of M (12 mg, 0.006 mmol) in acetone, the solution of
L (2.86 mg, 0.009 mmol) in methanol was added, and this resulting solution
was kept under stirring and heating in an oil bath at 50 °C overnight. The
product was obtained by ether addition (96% yield). Anal. Calc. (%) C )
45.97; H ) 5.41; N ) 6.16. Found: C ) 46.26; H ) 5.66; N ) 6.21. 1H
NMR (CDCl3, 400 MHz): δ 10.81 (s, 6H, -NH), 9.23 (s, 3H, ArH), 9.19
(d, 6H, Py-H), 8.79 (d, 6H, Py-H), 8.3 (m, 12H, ArH), 7.61 (m, 9H, ArH),
7.15 (d, 12H, ArH), 6.91 (d, 12H, ArH), 1.9 (q, 72H, -CH2), 1.1 (t, 108H,
(2) (a) Kryschenko, Y. K.; Seidel, S. R.; Arif, A. M.; Stang, P. J. J. Am.
Chem. Soc. 2003, 125, 5193. (b) Mukherjee, P. S.; Das, N.; Kryeschenko,
Y.; Arif, A. M.; Stang, P. J. J. Am. Chem. Soc. 2004, 126, 2464. (c) Fujita,
M.; Tominaga, M.; Hori, A.; Therrien, B. Acc. Chem. Res. 2005, 38, 371.
(d) Oin, Z.; Jennings, M. C.; Puddephatt, R. J. Chem. Commun. 2001, 2676.
(e) Seidel, S. R.; Stang, P. J. Acc. Chem. Soc. 2002, 35, 972; and references
therein. (f) Leininger, S.; Fan, J.; Schmitz, M.; Stang, P. J. Proc. Natl. Acad.
Sci. U.S.A. 2000, 97, 1380. (g) Stang, P. J.; Olenyuk, B. Acc. Chem. Res.
1997, 30, 502.
1
-CH3).31P NMR (CDCl3, 400 MHz): 15.60 (s, JPt-P ) 2872 Hz). (b)
Crystallographic data were collected at 100(K) K using a Bruker X8 Apex
II diffractometer equipped with monochromated Mo-KR radiation (λ )
0.71073 Å). Crystal data for linker M: C60 H102 I3 Fe3 N O26 P6 Pt3, MW
) 1989.22, monoclinic, P21/n, Z ) 4, a ) 16.944(5) Å, b ) 17.295(5) Å,
c ) 25.961(7) Å, ꢀ ) 101.622(7)°, V ) 7452.0(4) Å3, R1 ) 0.070 and
wR2 ) 0.1992.
10.1021/om701082y CCC: $40.75
2008 American Chemical Society
Publication on Web 01/11/2008