ACS Medicinal Chemistry Letters
Letter
(12) Chene, P. Inhibiting the p53-MDM2 interaction: an important
target for cancer therapy. Nat. Rev. Cancer 2003, 3, 102−109.
(13) Bottger, A.; Bottger, V.; Sparks, A.; Liu, W.-L.; Howard, S. F.;
Lane, D. P. Design of a synthetic MDM2-binding mini protein that
activates the p53 response in vivo. Curr. Biol. 1997, 7, 860−869.
(14) Kussie, P. H.; Gorina, S.; Marechal, V.; Elenbaas, B.; Moreau, J.;
Levine, A. J.; Pavletich, N. P. Structure of the MDM2 oncoprotein
bound to the p53 tumor suppressor transactivation domain. Science
1996, 274, 948−953.
of one (12) or two (11a) polar hydroxyl groups decreased the
direct inhibition of CYP 3A4 with IC50 values of 13.3 and >30
μM, respectively. However, both compounds displayed CYP
3A4 metabolism/mechanism-based inhibition (coincubation
IC50/preincubation IC50 ≈ 4−15-fold), which led to a more
thorough investigation that will be the subject of a future
publication.
In summary, while continuing to optimize the substituted
piperidine as a novel series of HDM2 inhibitors, significant
potency enhancement was achieved by introducing an aliphatic
side chain at the piperidine 2-position. As a result,
corresponding cell-based activities were improved while
maintaining a favorable toxicity window between wt-p53 and
mutant-p53 cell lines for this new series inhibitor. Introduction
of this side chain afforded a great opportunity for further
optimization of activity and DMPK profiles toward the
discovery of an improved small molecule HDM2 antagonist.
(15) Vassilev, L. T.; Vu, B. T.; Graves, B.; Carvajal, D.; Podlaski, F.;
Filipovic, Z.; Kong, N.; Kammlott, U.; Lukacs, C.; Klein, C.; Fotouhi,
N.; Liu, E. A. In vivo activation of the p53 pathway by small-molecule
antagonists of MDM2. Science 2004, 303, 844−848.
(16) Hu, C.-Q.; Hu, Y.-Z. Small molecule inhibitors of the p53-
MDM2. Curr. Med. Chem. 2008, 15, 1720−1730.
(17) Patel, S.; Player, M. R. Small-molecule inhibitors of the p53-
HDM2 interaction for the treatment of cancer. Expert Opin. Invest.
Drugs 2008, 17, 1865−1882.
(18) Ma, Y.; Lahue, B.; Shipps, G.; Brookes, J.; Wang, Y. Substituted
piperidines as HDM2 inhibitors. Bioorg. Med. Chem. Lett. 2014, 24,
1026−1030.
ASSOCIATED CONTENT
* Supporting Information
■
(19) Ma, Y.; Lahue, B.; Shipps, G.; Wang, Y.; Bogen, S.; Voss, M.;
Nair, L.; Tian, Y.; Doll, R.; Guo, Z.; Strickland, C.; Zhang, R.; McCoy,
M.; Pan, W.; Siegel, E.; Gibeau, C. Preparation of substituted
piperidines that increase p53 activity and the uses thereof. U.S. Pat.
Appl. Publ. US2008004287, 2008.
S
Experimental procedures and LC−MS characterization data for
new compounds. This material is available free of charge via the
(20) Brubaker, A.; Colley, M. Synthesis and pharmacological
evaluation of some 6-substituted 7-methyl-1,4-dioxa-7-azaspiro[4.5]-
decanes as potential dopamine agonists. J. Med. Chem. 1986, 29, 1528.
(21) Cvetovich, R. J.; Chung, J. Y. L.; Kress, M. H.; Amato, J. S.;
Matty, L.; Weingarten, M. D.; Tsay, F.-R.; Li, Z.; Zhou, G. An efficient
synthesis of a dual PPAR α/γ agonist and the formation of a sterically
congested α-aryloxyisobutyric acid via a Bargellini reaction. J. Org.
Chem. 2005, 70, 8560−8563.
(22) Rychnovsky, S. D.; Beauchamp, T.; Vaidyanathan, R.; Kwan, T.
Synthesis of chiral nitroxides and an unusual racemization reaction. J.
Org. Chem. 1998, 63, 6363−6374.
(23) Zhang, R.; Mayhood, T.; Lipari, P.; Wang, Y.; Durkin, J.; Syto,
R.; Gesell, J.; McNemar, C.; Windsor, W. Fluorescence polarization
assay and inhibitor design for MDM2/p53 interaction. Anal. Biochem.
2004, 331, 138−146.
AUTHOR INFORMATION
Corresponding Author
Notes
■
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Authors would like to acknowledge Diane Rindgen, Hui Wan,
Anthony Soares, and Shiying Chen for processing and
interpreting CYP data.
REFERENCES
■
(1) Levine, A. J. p53, the cellular gatekeeper for growth and division.
Cell 1997, 88, 323−331.
(2) Vousden, K. H.; Lu, X. Live or let die: the cell’s response to p53.
Nat. Rev. Cancer 2002, 2, 594−604.
(3) Oren, M. Decision making by p53: life, death and cancer. Cell
Death Differ. 2003, 10, 431−442.
(4) Fridman, J. S.; Lowe, S. W. Control of apoptosis by p53. Oncogene
2003, 22, 9030−9040.
(5) Vazquez, A.; Bond, E. E.; Levine, A. J.; Bond, G. L. The genetics
of the p53 pathway, apoptosis and cancer therapy. Nat. Rev. Drug
Discovery 2008, 7, 979−987.
(6) Chen, J.; Wu, X.; Lin, J.; Levine, A. J. mdm-2 inhibits the G1
arrest and apoptosis functions of the p53 tumor suppressor protein.
Mol. Cell. Biol. 1996, 16, 2445−2452.
(7) Momand, J.; Zambetti, G. P.; Olson, D. C.; George, D.; Levine,
A. J. The mdm-2 oncogene product forms a complex with the p53
protein and inhibits p53-mediated transactivation. Cell 1992, 69,
1237−1245.
(8) Momand, J.; Wu, H. H.; Dasgupta, G. MDM2: master regulator
of the p53 tumor suppressor protein. Gene 2000, 242, 15−29.
(9) Oliner, J. D.; Pietenpol, J. A.; Thiagalingam, S.; Gyuris, J.; Kinzler,
K. W.; Vogelstein, B. Oncoprotein MDM2 conceals the activation
domain of tumor suppressor p53. Nature 1993, 362, 857−860.
(10) Momand, J.; Jung, D.; Wilczynski, S.; Niland, J. The MDM2
gene amplification database. Nucleic Acids Res. 1998, 26, 3453−3459.
(11) Polsky, D.; Bastian, B. C.; Hazan, C.; Melzer, K.; Pack, J.;
Houghton, A.; Busam, K.; Cordon-Cardo, C.; Osam, I. HDM2 protein
overexpression, but not gene amplification, is related to tumorigenesis
of cutaneous melanoma. Cancer Res. 2001, 61, 7642−7646.
575
dx.doi.org/10.1021/ml500019s | ACS Med. Chem. Lett. 2014, 5, 572−575