bipyridine,7 Pd0/CHCl3,8 and palladacycles,9 which selectively
promote the 1,4-addition in preference to MH coupling, have
been reported. However, in most cases using such catalyst
systems, substrates are limited to enones and enals, and R,â-
unsaturated esters are usually converted to MH coupling
products predominantly.6a,b,d Exceptionally, it has been reported
that a PdII/bipyridine catalyst allows the 1,4-addition of some
crotonates and cinnamates,7 but there has been, to our knowl-
edge, no selective example for the palladium-catalyzed 1,4-
addition of arylboronic acids to more simple esters, â-unsub-
stituted acrylates, to form 3-arylpropionic acid derivatives.
3-Arylpropionic acids and their derivatives are useful building
blocks in organic synthesis10 and known to exhibit interesting
biological activities.11 During our continuous study of transition
metal-catalyzed arylation of unsaturated compounds using
arylboron reagents,12 we observed a notable ligand effect in the
palladium-catalyzed reaction of arylboronic acids with acrylates
that the use of triphenyl phosphite can suppress MH coupling
to give the corresponding 3-arylpropionates selectively. We
report herein the results for the arylation of acrylate esters and
related compounds.
Palladium/Phosphite-Catalyzed 1,4-Addition of
Arylboronic Acids to Acrylic Acid Derivatives
Hakaru Horiguchi, Hayato Tsurugi, Tetsuya Satoh,* and
Masahiro Miura*
Department of Applied Chemistry, Faculty of Engineering,
Osaka UniVersity, Suita, Osaka 565-0871, Japan
satoh@chem.eng.osaka-u.ac.jp;
ReceiVed NoVember 28, 2007
When phenylboronic acid (1a) (1.2 mmol) was treated with
n-butyl acrylate (2a) (1 mmol) in the presence of Pd(OAc)2 (0.05
mmol) and Na2CO3 (2 mmol) as catalyst and base, respectively,
in DMF (5 mL) at room temperature under air, the oxidative
MH coupling proceeded catalytically to produce n-butyl cin-
namate (4a) in 59% yield (Table 1, entry 1). A small amount
of biphenyl (5a) was also formed as the oxidative homocoupling
product of 1a,13 but no 1,4-adduct, n-butyl 3-phenylpropionate
1,4-Addition of arylboronic acids to acrylic acid derivatives
proceeds efficiently in the presence of a palladium catalyst
system of Pd(OAc)2/(PhO)3P to produce the corresponding
3-arylpropionic acid derivatives. The use of the phosphite
ligand is the key to conducting the addition smoothly with
suppressing the competing Mizoroki-Heck-type oxidative
coupling.
(6) (a) Nishikata, T.; Yamamoto, Y.; Miyaura, N. Angew. Chem., Int.
Ed. 2003, 42, 2768. (b) Nishikata, T.; Yamamoto, Y.; Miyaura, N.
Organometallics 2004, 23, 4317. (c) Nishikata, T.; Yamamoto, Y.; Miyaura,
N. Chem. Lett. 2005, 34, 720. (d) Gini, F.; Hessen, B.; Minnaard, A. J.
Org. Lett. 2005, 7, 5309. (e) Nishikata, T.; Yamamoto, Y.; Miyaura, N.
AdV. Synth. Catal. 2007, 349, 1759.
The transition metal-catalyzed 1,4-conjugate addition of
organometallic reagents to R,â-unsaturated carbonyl compounds
is a powerful tool for C-C bond formation. Among the various
reagents, organoboron compounds are highly useful due to their
commercial availability, stability, and low toxicity.1 Since
Miyaura and co-workers reported the rhodium-catalyzed 1,4-
addition of arylboronic acids to enones as pioneering work,2
the conjugate arylation has been widely developed.3 Meanwhile,
the palladium-catalyzed version has been less explored, probably
due to the fact that a Mizoroki-Heck-type oxidative coupling
(MH coupling)4 takes place often competitively. Recently,
several catalyst systems including Pd0/SbCl3,5 cationic PdII,6 PdII/
(7) (a) Lu, X.; Lin, S. J. Org. Chem. 2005, 70, 9651. (b) Lin, S.; Lu, X.
Tetrahedron Lett. 2006, 47, 7167.
(8) Yamamoto, T.; Iizuka, M.; Ohta, T.; Ito, Y. Chem. Lett. 2006, 35,
198.
(9) (a) He, P.; Lu, Y.; Dong, C.-G.; Hu, Q.-S. Org. Lett. 2007, 9, 343.
(b) Suzuma, Y.; Yamamoto, T.; Ohta, T.; Ito, Y. Chem. Lett. 2007, 36,
470. (c) He, P.; Lu, Y.; Hu, Q.-S. Tetrahedron Lett. 2007, 48, 5283. (d)
Bedford, R. B.; Betham, M.; Charmant, J. P. H.; Haddow, M. F.; Orpen,
A. G.; Pilarski, L. T.; Coles, S. J.; Hursthouse, M. B. Organometallics 2007,
26, 6346.
(10) For example, see: (a) Yamanouchi, T.; Yamane, H. Japanese Patent
JP 63250356, 1988. (b) Cui, D.-M.; Zhang, C.; Kawamura, M.; Shimada,
S. Tetrahedron Lett. 2004, 45, 1741.
(11) For example, see: (a) Andersson, K.; Boije, M.; Gottfries, J.;
Inghardt, T.; Li, L.; Lindstedt, A. E.-L. PCT Int. Appl. 1999, WO9962871.
(b) Yan, L.; Huo, P.; Doherty, G.; Toth, L.; Hale, J. J.; Mills, S. G.; Hajdu,
R.; Keohane, C. A.; Rosenbach, M. J.; Milligan, J. A.; Shei, G.-J.; Chrebet,
G.; Bergstrom, J.; Card, D.; Quackenbush, E.; Wickham, A.; Mandala, S.
M. Bioorg. Med. Chem. Lett. 2006, 16, 3679.
(1) For reviews, see: (a) Miyaura, N.; Suzuki, A. Chem. ReV. 1995, 95,
2457. (b) Suzuki, A. J. Organomet. Chem. 1998, 576, 147. (c) Miyaura, N.
In Metal-Catalyzed Cross-Coupling Reactions, 2nd ed.; de Meijere, A.,
Diederich, F., Eds.; Wiley-VCH: Weinheim, Germany, 2004; pp 41-123.
(2) Sakai, M.; Hayashi, H.; Miyaura, N. Organometallics 1997, 16, 4229.
(3) (a) Fagnou, K.; Lautens, M. Chem. ReV. 2003, 103, 169. (b) Hayashi,
T.; Yamasaki, K. Chem. ReV. 2003, 103, 2829. (c) Miura, T.; Murakami,
M. Chem. Commun. 2007, 217.
(4) For recent examples, see: (a) Jung, Y. C.; Mishra, R. K.; Yoon, C.
H.; Jung, K. W. Org. Lett. 2003, 5, 2231. (b) Andappan, M. M. S.; Nilsson,
P.; Larhed, M. Chem. Commun. 2004, 218. (c) Andappan, M. M. S.; Nilsson,
P.; von Schenck, H.; Larhed, M. J. Org. Chem. 2004, 69, 5212. (d) Yoon,
C. H.; Yoo, K. S.; Yi, S. W.; Mishra, R. K.; Jung, K. W. Org. Lett. 2004,
6, 4037. (e) Akiyama, K.; Wakabayashi, K.; Mikami, K. AdV. Synth. Catal.
2005, 347, 1569. (f) Enquist, P-A.; Lindh, J.; Nilsson, P.; Larhed, M. Green
Chem. 2006, 8, 338. (g) Delcamp, J. H.; White, M. C. J. Am. Chem. Soc.
2006, 128, 15076. (h) Yoo, K. S.; Yoon, C. H.; Jung, K. W. J. Am. Chem.
Soc. 2006, 128, 16384. (i) Penn, L.; Shpruhman, A.; Gelman, D. J. Org.
Chem. 2007, 72, 3875.
(12) (a) Oguma, K.; Miura, M.; Satoh, T.; Nomura, M. J. Am. Chem.
Soc. 2000, 122, 10464. (b) Oguma, K.; Miura, M.; Satoh, T.; Nomura, M.
J. Organomet. Chem. 2002, 648, 297. (c) Satoh, T.; Ogino, S.; Miura, M.;
Nomura, M. Angew. Chem., Int. Ed. 2004, 43, 5063. (d) Ueura, K.; Satoh,
T.; Miura, M. Org. Lett. 2005, 7, 2229. (e) Ueura, K.; Miyamura, S.; Satoh,
T.; Miura, M. J. Organomet. Chem. 2006, 691, 2821. (f) Miyamura, S.;
Satoh, T.; Miura, M. J. Org. Chem. 2007, 72, 2255.
(13) For examples of homocoupling of arylboronic acids under aerobic
conditions, see: (a) Smith, K. A.; Campi, E. M.; Jackson, W. R.; Marcuccio,
S.; Naeslund, C. G. M.; Deacon, G. B. Synlett 1997, 131. (b) Wong, M. S.;
Zhang, X. L. Tetrahedron Lett. 2001, 42, 4087. (c) Parrish, J. P.; Jung, Y.
C.; Floyd, R. J.; Jung, K. W. Tetrahedron Lett. 2002, 43, 7899. (d) Yoshida,
H.; Yamaryo, Y.; Ohshita, J.; Kunai, A. Tetrahedron Lett. 2003, 44, 1541.
(5) Cho, C. S.; Motofusa, S.-I.; Ohe, K.; Uemura, S. J. Org. Chem. 1995,
60, 883.
10.1021/jo702546t CCC: $40.75 © 2008 American Chemical Society
Published on Web 01/15/2008
1590
J. Org. Chem. 2008, 73, 1590-1592