RATHER AND SIDDIQUI
13 of 14
[10] O. K. Farha, I. Eryazici, N. C. Jeong, B. G. Hauser, C. E.
Wilmer, A. A. Sarjeant, R. Q. Snurr, S. T. Nguyen, A. O. z.r.
Yazaydın, J. T. Hupp, J. Am. Chem. Soc. 2012, 134, 15016.
filtration. The catalyst was then washed with ethyl
acetate and reused for subsequent cycles. The catalyst
was found to retain its activity for a minimum of four
reaction cycles displaying a high catalytic performance
with over 90% yield of the product (Figure 11).
[11] H. Deng, S. Grunder, K. E. Cordova, C. Valente, H. Furukawa,
M. Hmadeh, F. Ga'ndara, A. C. Whalley, Z. Liu, S. Asahina,
Science 2012, 336, 1018.
[12] H. Furukawa, Y. B. Go, N. Ko, Y. K. Park, F. J. Uribe‐Romo, J.
Kim, M. O'Keeffe, O. M. Yaghi, Inorg. Chem. 2011, 50, 9147.
4 | CONCLUSIONS
[13] S. Loera‐Serna, E. Ortiz, Advanced Catalytic Materials:
Photocatalysis and Other Current Trends. InTech 2016.
In summary, we have easily synthesized a new supported
catalyst, Ag3PO4@MOF‐5, and used it for the green and
sustainable synthesis of indenoquinoline derivatives.
The catalyst was found to be highly efficient and could
be reused for four catalytic cycles. No need for column
chromatography for purification of compounds, solvent‐
free conditions, substrate tolerance and good yield of
products are some of the clear achievements of this
protocol. This newly developed energy‐sustainable
strategy provides a good alternative to reported methods.
[14] X. Kang, H. Liu, M. Hou, X. Sun, H. Han, T. Jiang, Z. Zhang, B.
Han, Angew. Chem. Int. Ed. 2016, 128, 1092.
[15] J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, C.‐Y. Su, Chem. Soc.
Rev. 2014, 43, 6011.
[16] A. Schneemann, V. Bon, I. Schwedler, I. Senkovska, S. Kaskel,
R. A. Fischer, Chem. Soc. Rev. 2014, 43, 6062.
[17] W. Xuan, C. Zhu, Y. Liu, Y. Cui, Chem. Soc. Rev. 2012, 41, 1677.
[18] A. Dhakshinamoorthy, H. Garcia, Chem. Soc. Rev. 2014, 43, 5750.
[19] V. Sadhasivam, R. Balasaravanan, C. Chithiraikumar, A. Siva,
ChemistrySelect 2017, 2, 1063.
[20] (a)K. Doitomi, K. Xu, H. Hirao, Dalton Trans. 2017, 46, 3470.
ACKNOWLEDGMENTS
[21] T. L. H. Doan, T. Q. Dao, H. N. Tran, P. H. Tran, T. N. Le, Dal-
ton Trans. 2016, 45, 7875.
The authors are grateful to the Council of Science and
Technology, Lucknow, UP, bearing ref. no. CST/
SERPD/D‐283 (14 May 2015), for financial assistance in
the form of major research project. The authors also
acknowledge DRS II (UGC, New Delhi), University
Sophisticated Instrument Facility (USIF), AMU, Aligarh
for SEM–EDX and TEM facilities, IIT Mumbai for 13C
MAS NMR analysis, IIT Guwahati for BET analysis and
SAIF Punjab for providing NMR and mass spectra.
[22] (a)M. Thimmaiah, P. Li, S. Regati, B. L. Chen, J. C. G. Zhao,
Tetrahedron Lett. 2012, 53, 4870. (b)P. Puthiaraj, A. Ramu, K.
Pitchumani, Asian J. Org. Chem. 2014, 3, 784. (c)J. Yang, P.
H. Li, L. Wang, Catal. Commun. 2012, 27, 58.
[23] V. K. Y. Lo, A. O. Y. Chan, C. M. Che, Org. Biomol. Chem. 2015,
13, 6667.
[24] J. M. Weibel, A. Blanc, P. Pale, Chem. Rev. 2008, 108, 3149.
[25] Z. Li, C. He, Eur. J. Org. Chem. 2006, 19, 4313.
[26] Y. P. Liu, L. Fang, H. D. Lu, L. J. Liu, H. Wang, C. Z. Hu, Catal.
Commun. 2012, 17, 200.
[27] Y. P. Bi, H. Y. Hu, S. X. Ouyang, Z. B. Jiao, G. X. Lu, J. H. Ye,
ORCID
Chem. Eur. J. 2012, 18, 14272.
[28] M. Anzini, A. Cappelli, S. Vomero, A. Cagnotto, M. Skorupska,
Med. Chem. Res. 1993, 3, 44.
[29] M. A. Quraishi, V. R. Thakur, S. N. Dhawan, Indian J. Chem.
Sect. B 1989, 28, 891.
REFERENCES
[1] C. Sanchez, B. Julián, P. Belleville, M. Popall, J. Mater. Chem.
2005, 15, 3559.
[30] (a)M. Yamato, Y. Takeuchi, K. Hashigaki, Y. Ikeda, M. C.
Chang, K. Takeuchi, M. Matsushima, T. Tsuruo, T. Tashiro,
S. Tsukagoshi, Y. Yamashita, H. Nakano, J. Med. Chem. 1989,
32, 1295. (b)L. W. Deady, J. Desneves, A. J. Kaye, G. J. Finlay,
B. C. Baguley, W. A. Denny, Bioorg. Med. Chem. 2000, 8, 977.
[2] G. Kickelbick, Hybrid Mater. 2014, 1, 39.
[3] S. Kaskel, F. Schüth, M. Stöcker, Micropor. Mesopor. Mater.
2004, 1, 1.
[31] J. R. Brooks, C. Berman, M. Hichens, R. L. Primka, G. F. Reynolds,
[4] G. Férey, Chem. Soc. Rev. 2008, 37, 191.
G. H. Rasmusson, Proc. Soc. Exp. Biol. Med. 1982, 169, 67.
[5] A. K. Cheetham, C. N. R. Rao, R. K. Feller, Chem. Commun.
2006, 4780.
[32] A. Rampa, A. Bisi, F. Belluti, S. Gobbi, P. Valenti, V.
Andrisano, V. Cavrini, A. Cavalli, M. Recanatini, Bioorg. Med.
Chem. 2000, 8, 497.
[6] A. K. Cheetham, C. N. R. Rao, Science 2007, 318, 58.
[7] J. C. Tan, C. A. Merrill, J. B. Orton, A. K. Cheetham, Acta
Mater. 2009, 57, 3481.
[33] B. Venugopalan, C. P. Bapat, E. P. Desouza, N. J. Desouza,
Indian J. Chem. Sect. B 1992, 31, 35.
[8] S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. Int. Ed. 2004,
43, 2334.
[34] L. W. Deady, A. J. Kaye, G. J. Finlay, B. C. Baguley, W. A.
Denny, J. Med. Chem. 1997, 40, 2040.
[9] J. L. C. Rowsell, O. M. Yaghi, Micropor. Mesopor. Mater. 2004,
73, 3.
[35] C. H. Tseng, C. W. Tung, C. H. Wu, C. C. Tzeng, Y. H. Chen, T.
L. Hwang, Y. L. Chen, Molecules 2017, 6, 22.