I. Tellitu, E. Dom´ınguez / Tetrahedron 64 (2008) 2465e2470
2469
J. Org. Chem. 2005, 70, 2893e2903; (g) Wirth, T. Angew. Chem., Int.
Ed. 2005, 44, 3656e3665.
8. Justik, M. W.; Koser, G. F. Tetrahedron Lett. 2004, 45, 6159e6163.
4.4. Characterization data for new products
4.4.1. 1,2-Bis(trifluoroacetoxy)-3-phenylpropane (2h)
1H NMR (300 MHz, CDCl3) d 7.41e7.20 (m, 5H), 5.50
(ddd, J¼9.8, 6.9, 2.8 Hz, 1H), 4.58 (dd, J¼12.2, 2.8 Hz,
1H), 4.37 (dd, J¼12.2, 6.9 Hz, 1H), 3.14e2.99 (m, 2H); 13C
NMR (300 MHz, CDCl3) d 157.3e156.4 (m, 2ꢁCO), 133.9,
129.2, 129.1, 127.7, 114.2 (q, 2ꢁCF3), 75.4, 66.2, 36.3; MS
m/z (% rel inten.) 230 (MþꢂCH2OCOCF3, 67), 117 (53), 91
(100); HRMS calcd for C11H10F3O2 (MþꢂCH2OCOCF3)
231.0633, found 231.0628.
´
9. (a) Serna, S.; Tellitu, I.; Domınguez, E.; Moreno, I.; SanMartın, R. Tetra-
´
hedron Lett. 2003, 3483e3486; (b) Tellitu, I.; Urrejola, A.; Serna, S.;
´
Moreno, I.; Herrero, M. T.; Domınguez, E.; SanMartin, R.; Correa, A.
Eur. J. Org. Chem. 2007, 437e444.
10. (a) Hudlicky, T.; Thorpe, A. J. Chem. Commun. 1996, 1993e2000; (b)
Carless, H. A. J. Tetrahedron: Asymmetry 1992, 3, 795e826.
11. For some recent contributions from our group, see: (a) Moreno, I.; Tellitu,
´
I.; Etayo, J.; SanMartin, R.; Domınguez, E. Tetrahedron 2001, 57,
´
5403e5411; (b) Serna, S.; Tellitu, I.; Domınguez, E.; Moreno, I.;
SanMartin, R. Org. Lett. 2005, 7, 3073e3076; (c) Correa, A.; Tellitu, I.;
´
Domınguez, E.; Moreno, I.; SanMartin, R. J. Org. Chem. 2005, 70,
´
2256e2264; (d) Correa, A.; Tellitu, I.; Domınguez, E.; SanMartin, R.
Org. Lett. 2006, 8, 4811e4813.
4.4.2. 1,2-Bis(trifluoroacetoxy)-3-(4-methoxyphenyl)propane
(2i) and 1,3-bis(trifluoroacetoxy)-2-(4-methoxyphenyl)
propane (5i)
12. At higher dilution, the reaction time was prolonged excessively.
13. Diesters 3aee were identified by the aid of selective TOCSY experiments
from the crude reaction prior to the addition of silica gel. See selected
information in Table 1.
1H NMR (500 MHz, CDCl3) d 7.16e7.10 (m, 2H-5i, 2H-2i),
6.91e6.85 (m, 2H-2i, 2H-5i), 5.45 (ddd, J¼9.6, 7.2, 2.6 Hz,1H-
2i), 4.65e4.54 (m, 1H-2i, 4H-5i), 4.36 (dd, J¼12.2, 6.9 Hz,
1H-2i), 3.81 (s, 3H, 2i/5i), 3.80 (s, 3H, 5i/2i), 3.57e3.48 (m,
1H, 5i), 3.07e2.93 (m, 2H, 2i); 13C NMR (300 MHz, CDCl3)
d 158.6, 158.1, 157.0e155.2 (m, 4ꢁCO), 129.2, 127.8, 126.3,
124.8, 119.1, 115.3, 113.5, 113.4 (q, 4ꢁCF3), 113.3, 74.6
(2i), 66.6 (5i), 65.2 (2i), 54.1, 54.0, 41.4 (5i), 34.4 (2i);
HRMS calcd for C14H12F6O5 374.0589, found 374.0591.
14. (a) The oxidation of alkenes to carbonyl compounds catalyzed by
palladium(II) salts (known as the Wacker reaction) normally proceeds
with Markovnikov regioselectivity. For a novel anti-Markovnikov regiose-
lectivity (leading to aldehydes from terminal olefins) in the Wacker
reaction of styrenes, see: Wright, J. A.; Gaunt, M. J.; Spencer, J. B.
Chem.dEur. J. 2005, 12, 949e955 and more recently, Muzart, J. Tetra-
hedron 2007, 63, 7505e7521; (b) The catalytic anti-Markovnikov hydra-
tion of terminal alkynes to aldehydes has been also described. See:
Grotjahn, D. B.; Lev, D. A. J. Am. Chem. Soc. 2004, 126, 12232e12233.
15. Phenylacetaldehyde (4a) is a common byproduct also obtained directly
during the oxidation of styrene into styrene oxide by a number of reaction
Acknowledgements
conditions. For
a recent example, see: Zhang, J.-L.; Che, C.-M.
Chem.dEur. J. 2005, 11, 3899e3914. Additionally, it has been shown
that styrene oxides suffer rearrangement of the epoxide ring with InCl3
to afford the corresponding arylacetaldehydes in good yields. See:
Ranu, B. C.; Jana, U. J. Org. Chem. 1998, 63, 8212e8216.
Financial support from the University of the Basque Country
(UPV 41.310-13656) and the Spanish Ministry of Science and
Technology (CTQ 2004-03706/BQU) is gratefully acknowl-
edged. The authors gratefully acknowledge PETRONOR,
S. A. (Muskiz, Bizkaia) for the generous gift of hexanes.
16. (a) Koser reported a similar alteration of the regioselectivity using HTIB.
See: Koser, G. F. J. Org. Chem. 1981, 46, 4324e4326; (b) Another exam-
ple of the use of hypervalent iodine reagents under solvent-free conditions
can be found in: Yusubov, M. S.; Wirth, T. Org. Lett. 2005, 7, 519e521.
17. Diester 2f resulted to be very unstable on silica gel. Therefore, it was iden-
tified from the crude 1H NMR by the distinctive A2M system of its
aliphatic protons [selected absorptions: 6.20 (dd, J¼8.3, 3.6, 1H, H-1);
4.69 (dd, J¼12.2, 8.3, 1H, H-2a); 4.59 (dd, J¼12.2, 3.6, 1H, H-2b)],
and by its transformation into the corresponding known 1-(p-chloro-
phenyl)-1,2-ethanediol 6f (Tsujigami, T.; Sugai, T.; Ohta, H. Tetrahedron:
Asymmetry 2001, 12, 2543e2549) using NaBH4 in MeOH. The yield
given in Table 1 is referred to the combined steps.
Supplementary data
Supplementary data associated with this article can be
References and notes
18. It must be pointed out that a control experiment carried out with styrene
1c using PIDA [phenyliodine(III) diacetate], instead of PIFA, under the
same reaction conditions resulted in the recovery of the starting material
completely unchanged. This result evidences the superior activity of PIFA
over PIDA.
1. (a) Modern Oxidation Methods; Backvall, J.-E., Ed.; Wiley-VCH:
¨
Weinheim, 2004; (b) Singh, H. S. Organic Synthesis by Oxidation with
Metal Compounds; Mijs, W. J., De Jonge, C. R. H. I., Eds.; Plenum:
New York, NY, 1986.
2. Makowka, O. Chem. Ber. 1908, 41, 943e944.
19. For spectroscopic information of aldehyde 4b, see: Miyaura, N.; Maeda,
K.; Suginome, H. J. Org. Chem. 1982, 47, 2117e2120; For 4c,d, see:
Ranu, B. C.; Jana, U. J. Org. Chem. 1998, 63, 8212e8216; For 4e, see:
Bosanac, T.; Wilcox, C. S. Org. Lett. 2004, 6, 2321e2324.
20. The ability of PhI as a leaving group has been estimated as 106 times
higher than the triflate group in the particular reaction of a phenyliodonium
salt. Okuyama, T.; Takino, T.; Sueda, T.; Ochiai, M. J. Am. Chem. Soc.
1995, 117, 3360e3367.
3. See for example: (a) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B.
Chem. Rev. 1994, 94, 2483e2547; (b) Zaitsev, A. B.; Adolfsson, H.
Synthesis 2006, 11, 1725e1756.
4. Zefirov, N. S.; Zhdankin, V. V.; Dan’kov, Yu. V.; Sorokin, V. D.;
Semerikov, V. N.; Koz’min, A. S.; Caple, R.; Berglund, B. A. Tetrahedron
Lett. 1986, 3971e3974.
5. Buddrus, J.; Plettenberg, H. Chem. Ber. 1980, 1494e1506.
6. C¸ elik, M.; Alp, C.; Coskun, B.; Gultekin, M. S.; Balci, M. Tetrahedron
¨
21. In these cases, donating methoxy groups are placed at 2- and 4-positions,
an electronic feature required to stabilize positively charged species III.
Consequently, the methoxy group located at the meta position in styrene
1d disfavors the stability of intermediate III, which explains the dramatic
decrease in the yield for its transformation into 4d.
Lett. 2006, 3659e3663.
7. For recent reviews on the synthetic applications of polyvalent iodine
reagents, see: (a) Varvoglis, A. Hypervalent Iodine in Organic Synthesis;
Academic: London, 1997; (b) Zhdankin, V. V.; Stang, P. J. Chem. Rev.
2002, 102, 2523e2584; (c) Stang, P. J. J. Org. Chem. 2003, 68, 2997e
3008; (d) Wirth, T. Top. Curr. Chem. 2003, 224, 1e264; (e) Tohma, H.;
Kita, Y. Adv. Synth. Catal. 2004, 346, 111e124; (f) Moriarty, R. M.
22. (a) Cram, D. J. J. Am. Chem. Soc. 1949, 71, 3863e3870; (b) Cram, D. J.;
Davis, R. J. Am. Chem. Soc. 1949, 71, 3871e3875; (c) Cram, D. J. J. Am.