ORGANIC
LETTERS
2008
Vol. 10, No. 5
721-724
An Efficient Synthesis of Highly
Functionalized [5,6] Aromatic
Spiroketals by Hetero-Diels
−Alder
Reaction
Guanglian Zhou, Jianrong Zhu, Zhixiang Xie,* and Ying Li*
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and
Chemical Engineering, Lanzhou UniVersity, Lanzhou 730000, P.R. China
xiezx@lzu.edu.cn; liying@lzu.edu.cn
Received December 3, 2007
ABSTRACT
A hetero-Diels−Alder reaction of vinyl sulfoxides with o-quinone methides precursor constructs highly functionalized [5,6] aromatic spiroketal
skeletons in moderate to good yields with high regioselectivity. The two functional groups (ketone and olefin) can be further subjected to
many synthetic transformations.
The [5,6] aromatic spiroketal skeleton is found in a wide
range of bioactive natural products such as heliquinomycin
(1) and its analogues (Figure 1).1 The interesting biological
activity and structures of these compounds have stimulated
many studies of [5,6] aromatic spiroketal skeleton construc-
tion. Even though there is progress that has been achieved
in this area in recent years,2 the synthesis of highly
functionalized [5,6] aromatic spiroketal skeletons remains
a formidable challenge.2c,d Our interest in these structures
has given rise to diverse methods for their expeditious
synthesis.
On the basis of our previous work on synthesis of [6,6]
aromatic spiroketal skeletons,3 we attempted to synthesize
highly functionalized [5,6] aromatic spiroketal skeletons
(Scheme 1) that would be applicable for most of the natural
products containing the [5,6] aromatic spiroketal skeletons.
To the best of our knowledge, there is no report of the
synthesis of functionalized [5,6] aromatic spiroketals using
a hetero-Diels-Alder reaction. In this letter, we report our
successful execution of this strategy.
(2) (a) Capecchi, T.; de Koning, C. B.; Michael, J. P. Tetrahedron Lett.
1998, 39, 5429. (b) Capecchi, T.; de Koning, C. B.; Michael, J. P. J. Chem.
Soc., Perkin Trans. 1 2000, 2681. (c) Qin, D.; Ren, R. X.; Siu, T.; Zheng,
C.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2001, 40, 4709. (d) Siu, T.;
Qin, D.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2001, 40, 4713. (e)
Tsang, K. Y.; Brimble, M. A.; Bremner, J. B. Org. Lett. 2003, 5, 4425. (f)
Waters, S. P.; Fennie, M. W.; Kozlowski, M. C. Tetrahedron Lett. 2006,
47, 5409. (g) Lindsey, C. C.; Wu, K. L.; Pettus, T. R. R. Org. Lett. 2006,
8, 2365. (h) Waters, S. P.; Fennie, M. W.; Kozlowski, M. C. Org. Lett.
2006, 8, 3243. (i) So¨1rgel, S.; Azap, C.; Reissig, H-U. Org. Lett. 2006, 8,
4875. (j) Tsang, K. Y.; Brimble, M. A. Tetrahedron 2007, 63, 6015. (k)
Akai, S.; Kakiguchi, K.; Nakamura, Y.; Kuriwaki, I.; Dohi, T.; Harada, S.;
Kubo, O.; Morita, N.; Kita, Y. Angew. Chem., Int. Ed. 2007, 46, 7458.
(3) Zhou, G. L.; Zheng, D. P.; Da, S. J.; Xie, Z. X.; Li, Y. Tetrahedron
Lett. 2006, 47, 3349.
(1) (a) Brockmann, H.; Lenk, W.; Schwantje, G.; Zeeck, A. Tetrahedron
Lett. 1966, 22, 3525. (b) Brockmann, H.; Lenk, W.; Schwantje, G.; Zeeck,
A. Chem. Ber. 1969, 102, 126. (c) Brockmann, H.; Zeeck, A. Chem. Ber.
1970, 103, 1709. (d) Coronelli, C.; Pagani, H.; Bardone, M. R.; Lancini,
G. C. J. Antibiot. 1974, 27, 161. (e) Bardone, M. R.; Martinelli, E.; Zerilli,
L. F.; Cornelli, C. Tetrahedron 1974, 30, 2747. (f) Stroshane, R. M.; Chan,
J. A.; Rubalcaba, E. A.; Garetson, A. L.; Aszalos, A. A.; Roller, P. P. J.
Antibiot. 1979, 32, 197. (g) Chino, M.; Nishikawa, K.; Umekia, M.; Hayashi,
C.; Yamazaki, T.; Tsuchida, T.; Sawa, T.; Hamada, M.; Takeuchi, T. J.
Antibiot. 1996, 49, 752. (h) Chino, M.; Nishikawa, K.; Tsuchida, T.; Sawa,
R.; Nakamura, H.; Nakamura, K. T.; Muraoka, Y.; Ikeda, D.; Naganawa,
H.; Sawa, T.; Takeuchi, T. J. Antibiot. 1997, 50, 143.
10.1021/ol7029068 CCC: $40.75
© 2008 American Chemical Society
Published on Web 02/12/2008