10.1002/anie.201703894
Angewandte Chemie International Edition
COMMUNICATION
lead to the coupled product or to the coupled product bearing an
ortho boronic ester. The maximally functionalised product is
highly versatile as each functional group can be transformed
chemoselectively making it an ideal intermediate in synthesis.
Acknowledgements
VG thanks the RS for a Newton International Fellowship. We
thank EPSRC (EP/I038071/1) for financial support. We thank C.
Sandford, Dr. Y. Wang, Dr. J. J. Wu, A. Fawcett, Dr. C. Gracía-
Ruiz, G. Casoni & Dr. R. Armstrong for discussions and preparing
certain boronic esters. We thank Prof. H. Ito for assistance with
boronic ester 9i. We thank Dr. Eddie Myers for useful discussions.
Keywords: sp2-sp3 Coupling • 1,2-Metallate rearrangement •
Organoboron • Stereospecific reactions• Phenylacetylenes
Scheme 3. Plausible mechanism for sp2-sp3 coupling and boron incorporation;
[1]
[2]
(a) N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457-2483; (b) A.
Suzuki, Angew. Chem. Int. Ed. 2011, 50, 6722-6737; Angew. Chem.
2011, 123, 6854–6869.
The boron incorporated products provide a rich source of
functionality which can be chemoselectively converted into a
range of diverse products (Scheme 4). Using K2CO3/MeOH the
orthogonal deprotection of the TMS group was achieved providing
the terminal alkyne 11a in 87% yield.[12] Hydration of 10a with 20
mol% triflic acid in TFE furnished ketone 11b in 76% yield.[13]
Under standard CuAAC conditions,[14] 11a was transformed to the
corresponding triazole product 11c in 85% yield. Oxidation of the
boronic ester with H2O2/NaOH and hydroxylamine sulfonic acid
(HSA)[15] gave the desired phenol 11d and aniline 11e in 90 and
62% respectively. Under standard Sonagashira conditions with
iodobenzene, 11a smoothly converted to the functionalized
alkyne 11f in 90% yield.
(a) D. Imao, B. W. Glasspoole, V. r. S. Laberge, C. M. Crudden, J. Am.
Chem. Soc. 2009, 131, 5024-5025; (b) D. L. Sandrock, L. Jean-Gérard,
C.-y. Chen, S. D. Dreher, G. A. Molander, J. Am. Chem. Soc. 2010, 132,
17108-17110; (c) T. Awano, T. Ohmura, M. Suginome, J. Am. Chem.
Soc. 2011, 133, 20738-20741; (d) L. Li, S. Zhao, A. Joshi-Pangu, M.
Diane, M. R. Biscoe, J. Am. Chem. Soc. 2014, 136, 14027-14030; (e) D.
Leonori, V. K. Aggarwal, Angew. Chem. Int. Ed. 2015, 54, 1082-1096;
Angew. Chem. 2015, 127, 1096–1111; (f) C.-Y. Wang, J. Derosa, M. R.
Biscoe, Chem. Sci. 2015, 6, 5105-5113.
[3]
(a) A. Bonet, M. Odachowski, D. Leonori, S. Essafi, V. K. Aggarwal,
Nature Chem. 2014, 6, 584-589; (b) M. Odachowski, A. Bonet, S. Essafi,
P. Conti-Ramsden, J. N. Harvey, D. Leonori, V. K. Aggarwal, J. Am.
Chem. Soc. 2016, 138, 9521-9532.
[4]
[5]
R. Larouche-Gauthier, T. G. Elford, V. K. Aggarwal, J. Am. Chem. Soc.
2011, 133, 16794-16797.
Alkenes can also be used in place of alkynes but reactions are not as
clean or high yielding (48% yield) as the bromohydrin methyl ether was
also formed from further bromination of the alkene and trapping by MeOH.
See SI for details.
[6]
(a) J. Lam, Chemistry and biology of naturally-occurring acetylenes and
related compounds (NOARC): proceedings of a Conference on the
Chemistry and Biology of Naturally-Occurring Acetylenes and Related
Compounds (NOARC), Elsevier, 1988; (b) H. C. Kolb, M. G. Finn, K. B.
Sharpless, Angew. Chem. Int. Ed. 2001, 40, 2004-2021.
[7]
[8]
D. Yue, N. Della Cà, R. C. Larock, Org. Lett. 2004, 6, 1581-1584.
(a) G. M. Davies, P. S. Davies, W. E. Paget, J. M. Wardleworth,
Tetrahedron Lett. 1976, 17, 795-798; (b) A. B. Levy, J. Org. Chem. 1978,
43, 4684-4685; (c) I. Akimoto, A. Suzuki, Synthesis 1979, 1979, 146-147;
(d) E. R. Marinelli, A. B. Levy, Tetrahedron Lett. 1979, 20, 2313-2316;
(e) J. Kagan, S. K. Arora, Tetrahedron Lett. 1983, 24, 4043-4046; (f) A.
Pelter, H. Williamson, G. M. Davies, Tetrahedron Lett. 1984, 25, 453-
456; (g) M. Ishikura, H. Kato, Tetrahedron 2002, 58, 9827-9838.
(a) J. L. Stymiest, G. Dutheuil, A. Mahmood, V. K. Aggarwal, Angew.
Chem. Int. Ed. 2007, 46, 7491-7494; Angew. Chem. 2007, 119: 7635–
7638; (b) J. L. Stymiest, V. Bagutski, R. M. French, V. K. Aggarwal,
Nature 2008, 456, 778-782; (c) R. Larouche-Gauthier, C. J. Fletcher, I.
Couto, V. K. Aggarwal, Chem. Commun. 2011, 47, 12592-12594; (d) A.
P. Pulis, D. J. Blair, E. Torres, V. K. Aggarwal, J. Am. Chem. Soc. 2013,
135, 16054-16057.
[9]
Scheme 4. Synthetic transformations of product 10a.
[10] K. Feeney, G. Berionni, H. Mayr, V. K. Aggarwal, Org. Lett. 2015, 17,
2614-2617.
In summary, we have successfully developed an efficient
enantiospecific sp2-sp3 coupling of a range of aromatic alkynes
with a broad range of enantioenriched boronic esters. The alkyne
acts as a reactive handle for reaction with NBS which triggers the
coupling process. Importantly, conditions were found which either
[11] K. Kubota, Y. Watanabe, H. Ito, Adv. Synth. Catal. 2016, 358, 2379-2384.
[12] U. Dutta, S. Maity, R. Kancherla, D. Maiti, Org. Lett. 2014, 16, 6302-6305.
[13] W. Liu, H. Wang, C.-J. Li, Org. Lett. 2016, 18, 2184-2187.
This article is protected by copyright. All rights reserved.