Triazole-Linked Dumbbell Oligodeoxynucleotides
nuclear factor κB (NF-κB) is one of the most effective
approaches.7 Activation of NF-κB upregulates genes related to
inflammatory and immunological responses, such as TNF-R,
adhesion molecules, macrophage colony-stimulating factor (M-
CSF), granulocyte/macrophage colony-stimulating factor (GM-
CSF), and monocyte chemoattractant protein (MCP). Therefore,
transfection of NF-κB decoy ODNs leads to anti-inflammatory
and immuno-suppressive activities.8-15 However, several short-
comings of the decoy strategy modulating transcription factors
make its practical application to biological systems unfeasible
as yet. Generally, relatively short double-stranded ODNs are
used in the decoy strategy and possess less thermal stability
under physiological conditions. Another drawback is the pres-
ence of extra- and intracellular nucleases, which cleave ODNs.16,17
To achieve thermal stability and resistance to nucleases,
structural alteration or chemical modification of decoy ODNs
is necessary.18-26 Dumbbell ODNs, which are circular ODNs
consisting of double-stranded stem region and nucleotide loops
at both of their termini, possess increased exonuclease resistance
because they have no terminal nucleotide residues.27-29 Dumb-
bell decoy ODNs against NF-κB were shown to inhibit in vitro
and ex vivo transcription. These ODNs were prepared by
enzymatically ligating two identical molecules.27,30 However,
in some cases, it is difficult to provide large quantities of
modified ODNs by enzymatic preparation.31,32 An alternative
approach for cross-linking nucleic acids might be chemical
modification, where a chemically reactive functional group is
placed site-specifically in proximity to the opposing strands of
a duplex.33 Additionally, chemical modification at both terminal
positions of the double-stranded ODNs with covalent cross-
linking providing dumbbell-like ODNs is expected to resist
degradation catalyzed by enzymes such as exonucleases.34 One
of the strategies to cross-link double-stranded ODNs at the
termini is the oxidation of thiols to form a disulfide, as reported
by Glick et al.35,36 Terminal cross-linking of double-stranded
ODNs increases the thermal stability of the double-stranded
ODNs and does not cause significant structural changes to the
internal helix. Therefore this strategy has been used to inves-
tigate the structure of double-stranded ODNs. Though this
oxidation proceeds quickly and is effective, it is reversible and
the resulting disulfide bond might be easily cleaved by nucleo-
philes existing in the biological system. Other chemical
modifications of ODNs without cross-links have also been
studied including R-ODN/â-ODN duplexes,37 phosphorothioate-
modified ODNs,16,38 PNA-DNA chimera,39,40 and LNA-DNA
chimera,41 respectively, although they all have drawbacks.
(5) Bielinska, A.; Shivdasani, R. A.; Zhang, L.; Nabel, G. J. Science
1990, 250, 997-1000.
(6) Morishita, R.; Gibbons, G. H.; Horiuchi, M.; Ellison, K. E.; Nakajima,
M.; Zhang, L.; Kaneda, Y.; Ogihara, T.; Dzau, V. J. Proc. Natl. Sci. U.S.A.
1995, 92, 5855-5859.
The Hu¨isgen reaction is a 1,3-dipolar cycloaddition between
azide and alkyne groups to afford a chemically stable 1,2,3-
triazole. The usual thermal cycloaddition by heating gives both
the 1,4- and 1,5-disubstituted triazoles with diminished regi-
oselectivity; however, a long reaction time is necessary. On the
other hand, the Cu(I)-catalyzed alkyne-azide cycloaddition
(CuAAC),42 which is known as “Click Chemistry”,43 proceeds
quite rapidly in a variety of solvents including aqueous media
(7) Morishita, R.; Sugimoto, T.; Aoki, M.; Kida, I.; Tomita, N.;
Moriguchi, A.; Maeda, K.; Sawa, Y.; Kaneda, Y.; Higaki, J.; Ogihara, T.
Nature Med. 1997, 3, 894-899.
(8) Khaled, A. R.; Butfiloski, E. J.; Sobel, E. S.; Schiffenbauer, J. Cell.
Immunol. 1998, 185, 49-58.
(9) Ono, S.; Date, I.; Onoda, K.; Shiota, T.; Ohmoto, T.; Ninomiya, Y.;
Asari, S.; Morishita, R. Hum. Gene Ther. 1998, 9, 1003-1011.
(10) Sharma, H. W.; Perez, J. R.; Higgins-Sochaski, K.; Hsiao, R.;
Narayanan, R. Anticancer Res. 1996, 16, 61-69.
(11) Tomita, N.; Morishita, R.; Tomita, S.; Yamamoto, K.; Aoki, M.;
Matsushita, H.; Hayashi, S.; Higaki, J.; Ogihara, T. J. Hypertens. 1998,
16, 993-1000.
(12) Tomita, N.; Morishita, R.; Lan, H. Y.; Yamamoto, K.; Hashizume,
M.; Notake, M.; Toyosawa, K.; Fujitani, B.; Mu, W.; Nikolic-Paterson, D.
J.; Atkins, R. C.; Kaneda, Y.; Higaki, J.; Ogihara, T. J. Am. Soc. Nephrol.
2000, 11, 1244-1252.
(27) Hosoya, T.; Takeuchi, H.; Kanesaki, Y.; Yamakawa, H.; Miyano-
Kurosaki, N.; Takai, K.; Yamamoto, N.; Takaku, H. FEBS Lett. 1999, 461,
136-140.
(28) Erie, D.; Sinha, N.; Olson, W.; Jones, R.; Breslauer, K. Biochemistry
1987, 26, 7150-7159.
(13) Suzuki, J.; Morishita, R.; Amano, J.; Kaneda, Y.; Isobe, M. Gene
Ther. 2000, 7, 1847-1852.
(29) Chu, B. C. F.; Orgel, L. E. Nucleic Acids Res. 1992, 20, 5857-
5858.
(14) Tomita, N.; Morishita, R.; Tomita, S.; Gibbons, G. H.; Zhang, L.;
Horiuchi, M.; Kaneda, Y.; Higaki, J.; Ogihara, T.; Dzau, V. J. Gene Ther.
2000, 7, 1326-1332.
(30) Lee, I. K.; Ahn, J. D.; Kim, H. S.; Park, J. Y.; Lee, K. U. Curr.
Drug Targ. 2003, 4, 619-623.
(31) Erie, D. A.; Jones, R. A.; Olson, W. K.; Sinha, N. K.; Breslauer,
K. J. Biochemistry 1989, 28, 268 -273.
(15) Vos, I. H.; Govers, R.; Grone, H. J.; Kleij, L.; Schurink, M.; De
Weger, R. A.; Goldschmeding, R.; Rabelink, T. J. FASEB J. 2000, 14, 815-
822.
(32) Ashley, G. W.; Kushlan, D. M. Biochemistry 1991, 30, 2927 -2933.
(33) For examples, see: (a) Cowart, M.; Benkovic, S. J. Biochemistry
1991, 30, 788-796. (b) Milton, J.; Connolly, B. A.; Nikiforov, T. T.;
Cosstick, R. J. Chem. Soc., Chem. Commun. 1993, 779-780. (c) Ferentz,
A. E.; Keating, T. A.; Verdine, G. L. J. Am. Chem. Soc. 1993, 115, 9006-
9014 and references cited therein. (d) Erlanson, D. A.; Chen, L.; Verdine,
G. L. J. Am. Chem. Soc. 1993, 115, 12583-12584. (e) Kool, E. T. Annu.
ReV. Biophys. Biomol. Struct. 1996, 25, 1-28. (f) Kool, E. T. Acc. Chem.
Res. 1998, 31, 502-510.
(16) Uhlmann, E.; Peyman, A. Chem. ReV. 1990, 90, 543-583.
(17) Chu, B. C. F.; Orgel, L. E. Nucleic Acids Res. 1992, 20, 5857-
5858.
(18) Egholm, M.; Buchard, O.; Christensen, L.; Behrens, C.; Freier, S.
M.; Driver, D. A.; Berg, R. H.; Kim, S. K.; Norden, B.; Nielsen, P. E.
Nature 1993, 365, 566-568.
(19) Demidov, V. V.; Potaman, V. N.; Frank-Kamenetskii, M. D.;
Egholm, M.; Buchard, O.; So¨nnichsen, S. H.; Nielsen, P. E. Biochem.
Pharmacol. 1994, 48, 1310-1313.
(34) Murakami, A.; Yamamoto, Y.; Namba, M.; Iwase, R.; Yamaoka,
T. Bioorg. Chem. 2001, 29, 223-233.
(20) Romanelli, A.; Pedone, C.; Saviano, M.; Bianch, N.; Borgatti, M.;
Mischiati, C.; Gambari, R. Eur. J. Biochem. 2001, 268, 6066-6075.
(21) Petersen, M.; Nielsen, C. B.; Nielsen, K. E.; Jensen, G. A.;
Bondensgaard, K.; Singh, S. K.; Rajwanshi, V. K.; Koskin, A. A.; Dahl,
B. M.; Wengel, J.; Jacobsen, J. P. J. Mol. Recognit. 2000, 13, 44-53.
(22) Petersen, M.; Wengel, J. Trends Biotechnol. 2003, 21, 74-81.
(23) Crinelli, R.; Bianchi, M.; Gentilini, L.; Magnani, M. Nucleic Acids
Res. 2002, 30, 2435-2443.
(35) Glick, G. D. J. Org. Chem. 1991, 56, 6746-6747.
(36) Osborne, S. E.; Vo¨lker, J.; Stevens, S. Y.; Breslauer, K. J.; Glick,
G. D. J. Am. Chem. Soc. 1996, 118, 11993-12003.
(37) Tanaka, H.; Vickart, P.; Bertrand, J.-R.; Rayner, B.; Morvan, F.;
Imbach, J.-L.; Paulin, D.; Malvy, C. Nucleic Acids Res. 1994, 22, 3069-
3074.
(38) Stein, C. A.; Subasinghe, C.; Shinozuka, K.; Cohen, J. S. Nucleic
Acids Res. 1988, 16, 3209-3221.
(24) Hikishima, S.; Minakawa, N.; Kuramoto, K.; Ogata, S.; Matsuda,
A. ChemBioChem 2006, 7, 1970-1975.
(39) Mischiati, C.; Borgatti, M.; Bianch, N.; Rutigliano, C.; Tomassetti,
M.; Feriotto, G.; Gambari, R. J. Biol. Chem. 1999, 274, 33114-33122.
(40) Romanelli, A.; Pedone, C.; Saviano, M.; Bianchi, N.; Borgatti, M.;
Mischiati, C.; Gambari, R. Eur. J. Biochem. 2001, 268, 6066-6075.
(41) Crinelli, R.; Bianchi, M.; Gentilini, L.; Magnani, M. Nucleic Acids
Res. 2002, 30, 2435-2443.
(25) Bielenska, A.; Shivedasani, R. A.; Zhang, L.; Nabel, G. J. Science
1990, 250, 997-1000.
(26) Brown, D. A.; Kang, S.-H.; Gryaznov, S. M.; DeDionisio, L.:
Heidenreich, O.; Sullivan, S.; Xu, X.; Nerenberg, M. I. J. Biol. Chem. 1994,
269, 26801-26805.
J. Org. Chem, Vol. 73, No. 5, 2008 1843