Life Sci., 2006, 80, 370; M. R. Ahn, K. Kunimasa, T. Ohta,
S. Kumazawa, M. Kamihira, K. Kaji, Y. Uto, H. Hori, H. Nagasawa
and T. Nakayama, Cancer Lett., 2007, 252, 235.
reactive followed by 1H, 4H, 2H, 5H, and 6H among the
examined artepillin C derivatives. By comparing the kobs values for
1H–6H, it is clear that the more electron-rich is the environment
the compound has, the lower is its DHT value, and the higher is its
6 I. Nakanishi, Y. Uto, K. Ohkubo, K. Miyazaki, H. Yakumaru,
S. Urano, H. Okuda, J. I. Ueda, T. Ozawa, K. Fukuhara, S. Fukuzumi,
H. Nagasawa, H. Hori and N. Ikota, Org. Biomol. Chem., 2003, 1, 1452.
7 H. Y. Zhang, Y. M. Sun and X. L. Wang, Chem.–Eur. J., 2003, 9, 502;
G. A. Russel, Can. J. Chem., 1956, 34, 1074; D. D. M. Wayner,
E. Lusztyk, K. U. Ingold and P. Mulder, J. Org. Chem., 1996, 61, 6430;
M. Lucarini, P. Pedrielli, G. F. Pedulli, S. Cabiddu and C. Fattuoni,
J. Org. Chem., 1996, 61, 9263; G. Brigati, M. Lucarini, V. Mugnaini and
G. F. Pedulli, J. Org. Chem., 2002, 67, 4828; H. Y. Zhang, Y. M. Sun
and X. L. Wang, Chem.–Eur. J., 2003, 9, 502; G. A. Russel, Can. J.
Chem., 1956, 34, 1074.
?
PhCMe2OO scavenging activity.
In conclusion, structural modification of artepillin C, resulting
in the decline of DHT, leads to the enhancement of cumylperoxyl-
scavenging activity. This is explained by the fact that 6H, having
six-fold lower DHT as compared to artepillin C, showed more than
?
two-fold higher PhCMe2OO -scavenging activity than artepillin C.
Such an augmentation in radical-scavenging efficiency may have
implications for reducing the excessive amount of radical scavenger
used in in vitro as well as in in vivo studies.
8 J. A. Howard, K. U. Ingold and M. Symonds, Can. J. Chem., 1968, 46,
1017.
9 Y. Uto, S. Ae, H. Nagasawa and H. Hori, ACS Symp. Ser., 2005, 909,
176.
This work was partially supported by Grant-in-Aid for Young
Scientist (B) (Nos. 19790043 and 19750034) from the Ministry of
Education, Culture, Sports, Science and Technology, Japan.
10 R. A. Sheldon, in The Activation of Dioxygen and Homogeneous
Catalytic Oxidation, ed. D. H. R. Barton, A. E. Martell and D. T.
Sawyer, Plenum, New York and London, 1993, pp. 9–30; G. W. Parshall
and S. D. Ittel, Homogeneous Catalysis, Wiley, New York, 2nd edn,
1992, ch. 10; A. E. Shilov, Activation of Saturated Hydrocarbons by
Transition Metal Complexes, D. Reidel Publishing Co., Dordrecht,
The Netherlands, 1984, ch. 4; A. Boettcher, E. R. Birnbaum, M. W. Day,
H. B. Gray, M. W. Grinstaff and J. A. Labinger, J. Mol. Catal. A:
Chem., 1997, 117, 229.
11 J. K. Kochi, Free Radicals in Solution, J. Wiley & Sons, New York,
1957; J. K. Kochi, P. J. Krusic and D. R. Eaton, J. Am. Chem. Soc.,
1969, 91, 1877; P. J. Krusic and J. K. Kochi, J. Am. Chem. Soc., 1969,
91, 3938; P. J. Krusic and J. K. Kochi, J. Am. Chem. Soc., 1969, 91,
3942.
12 S. Fukuzumi and Y. Ono, J. Chem. Soc., Perkin Trans. 2, 1977, 622;
S. Fukuzumi and Y. Ono, J. Chem. Soc., Perkin Trans. 2, 1977, 784.
13 J. A. Howard, Adv. Free-Radical Chem. (London), 1972, 4, 49.
14 I. Nakanishi, K. Miyazaki, T. Shimada, K. Ohkubo, S. Urano, N. Ikota,
T. Ozawa, S. Fukuzumi and K. Fukuhara, J. Phys. Chem. A, 2002, 106,
11123.
15 I. Nakanishi, K. Ohkubo, K. Miyazaki, W. Hakamata, S. Urano,
T. Ozawa, H. Okuda, S. Fukuzumi, N. Ikota and K. Fukuhara, Chem.
Res. Toxicol., 2004, 17, 26.
Notes and references
1 G. W. Burton and K. U. Ingold, J. Am. Chem. Soc., 1981, 103, 6472;
V. R. Bowry and K. U. Ingold, Acc. Chem. Res., 1999, 32, 27;
K. Hayashi, S. Komura, N. Isaji, N. Ohishi and K. Yagi, Chem. Pharm.
Bull., 1999, 47, 1521; I. Nakanishi, Y. Uto, K. Ohkubo, K. Miyazaki,
H. Yakumaru, S. Urano, H. Okuda, J. I. Ueda, T. Ozawa,
K. Fukuhara, S. Fukuzumi, H. Nagasawa, H. Hori and N. Ikota,
Org. Biomol. Chem., 2003, 1, 1452; N. Noguchi, Y. Iwaki,
M. Takahashi, E. Komuro, Y. Kato, K. Tamura, O. Cynshi,
T. Kodama and E. Niki, Arch. Biochem. Biophys., 1997, 342, 236.
2 M. Wijtmans, D. A. Pratt, L. Valgimigli, G. A. DiLabio, G. F. Pedulli
and N. A. Porter, Angew. Chem., Int. Ed., 2003, 42, 4370; G. W. Burton,
T. Doba, E. J. Gabe, L. Hughes, F. Lee, L. Prasad and K. U. Ingold,
J. Am. Chem. Soc., 1985, 107, 7053; A. Watanabe, N. Noguchi,
A. Fujisawa, T. Kodama, K. Tamura, O. Cynshi and E. Niki, J. Am.
Chem. Soc., 2000, 122, 5438; D. A. Pratt, G. A. DiLabio, G. Brigati,
G. F. Pedulli and L. Valgimigli, J. Am. Chem. Soc., 2001, 123, 4625;
L. Valgimigli, G. Brigati, G. F. Pedulli, G. A. DiLabio,
M. Mastragostino, C. Arbizzani and D. A. Pratt, Chem.–Eur. J.,
2003, 67, 5190; M. C. Foti, E. R. Johnson, M. R. Vinqvist, J. S. Wright,
L. R. C. Barclay and K. U. Ingold, J. Org. Chem., 2002, 67, 5190;
K. Mukai, Yukagaku, 1991, 41, 1063.
16 Density functional theory (DFT) calculations were performed on an
8CPU workstation (PQS, Quantum Cube QS8-2400C-064). Geometry
optimizations were carried out using the Becke3LYP and 6-31G* basis
set for the phenoxyl radical with the unrestricted Hartree–Fock (UHF)
formalism as implemented in the Gaussian 03 program Revision C.02.
The DHT values were determined by the single point energy calculations
at the B3LYP/6-31G* basis set with the restricted open shell Hartree–
Fock (ROHF) formalism.
3 H. Aga, T. Shibuya, T. Sugimoto, S. Nakajima and M. Kurimoto,
Biosci., Biotechnol., Biochem., 1994, 58, 945.
4 K. Hayashi, S. Komura, N. Isaji, N. Ohishi and K. Yagi, Chem. Pharm.
Bull., 1999, 47, 1521.
5 T. Kimoto, S. Arai, M. Aga, T. Hanaya, M. Kohguchi, Y. Nomura and
M. Kurimoto, Gan to Kagaku Ryoho, 1996, 23, 1855; T. Matsuno,
S. K. Jung, Y. Matsumoto, M. Saito and J. Morikawa, Anticancer Res.,
1997, 17, 3565; Y. Nakajima, M. Shimazawa, S. Mishima and H. Hara,
17 H. Y. Zhang, Y. M. Sun and X. L. Wang, J. Org. Chem., 2002, 67,
2709.
18 Y. M. Sun, H. Y. Zhang and D. Z. Chen, Chin. J. Chem., 2001, 19, 657.
628 | Chem. Commun., 2008, 626–628
This journal is ß The Royal Society of Chemistry 2008