10.1002/chem.202002410
Chemistry - A European Journal
COMMUNICATION
between the excited photocatalyst and the Hantzsch ester. Finally,
mechanistic studies were conducted to support the proposed
reaction mechanism. Suitable combinations of Hantzsch esters
and alkenes can be reacted via catalyst-free direct excitation.
[9]
W. F. Petersen, R. J. K. Taylor, J. R. Donald, Org. Biomol. Chem. 2017,
15, 5831–5845.
[10] Q.-F. Bai, C. Jin, J.-Y. He, G. Feng, Org. Lett. 2018, 20, 2172−2175.
[11] P.-Z. Wang, J.-R. Chen, W.-J. Xiao, Org. Biomol. Chem. 2019, 17, 6936–
6951.
[12] a) G. Goti, B. Bieszczad, A. Vega-Peñaloza, P. Melchiorre, Angew.
Chem. Int. Ed. 2019, 58, 1213–1217; b) B. Bieszczad, L. A. Perego, P.
Melchiorre, Angew. Chem. Int. Ed. 2019, 58, 16878–16883.
[13] N. Alandini, L. Buzzetti, G. Favi, T. Schulte, L. Candish, K. D. Collins, P.
Melchiorre, Angew. Chem. Int. Ed. 2020, 59, 5248–5253.
[14] E. Speckmeier, T. G. Fischer, K. Zeitler, J. Am. Chem. Soc. 2018, 140,
15353−15365.
Acknowledgements
This work was generously supported by the University of
Hamburg. M.O.K. thanks the Alexander von Humboldt
Foundation for an individual research fellowship.
[15] S. Fukuzumi, H. Kotani, K. Ohkubo, S. Ogo, N. V. Tkachenko, H.
Lemmetyinen, J. Am. Chem. Soc. 2004, 126, 1600–1601.
[16] L. Capaldo, D. Merli, M. Fagnoni, D. Ravelli, ACS Catal. 2019, 9,
3054−3058.
Keywords: photoredox catalysis• carbamoyl radical • Giese
reaction • 1,4-dihydropyridines • organic dyes
[17] F. Strieth-Kalthoff, M. J. James, M. Teders, L. Pitzer, F. Glorius, Chem.
Soc. Rev. 2018, 47, 7190–7202.
[18] A. J. Jimenez, M. Fagnoni, M. Mella, A. Albini, J. Org. Chem. 2009, 74,
6615–6622.
[1]
P. W. N. M. van Leeuwen, C1−building Blocks in Organic Synthesis,
Thieme, 2014.
[2]
[3]
J. M. Humphrey, A. R. Chamberlin, Chem. Rev. 1997, 97, 2243−2266.
a) a) V. R. Pattabiran, J. W. Bode, Nature 2011, 480, 471−479; b) R.
Marcia de Figueiredo, J.-S. Suppo, J.-M. Campagne, Chem. Rev. 2016,
116, 12029–12122.
[19] a) S. Fukuzumi, Electron Transfer: Mechanisms and Applications, Wiley,
2020; b) A. C. Benniston, A. Harriman, P. Li, J. P. Rostron, H. J. van
Ramesdonk, M. M. Groeneveld, H. Zhang, J. W. Verhoeven, J. Am.
Chem. Soc. 2005, 127, 16054−16064.
[20] J. Jung, J. Kim, G. Park, Y. You, E. J. Cho, Adv. Synth. Catal. 2016, 358,
74−80.
[4]
a) B. Giese, Angew. Chem. Int. Ed. 1983, 22, 753−764; General reviews:
b) W. Zhang, Tetrahedron 2001, 57, 7237−7262; c) G. S. C. Srikanth, S.
L. Castle, Tetrahedron 2005, 61, 10377–10441; d) G. J. Rowlands,
Tetrahedron 2009, 65, 8603–8655; e) C. P. O. Jasperese, D. P. Curran,T.
L. Fevig, Chem. Rev. 1991, 91, 1237–1286.
[21] a) D. M. Hedstrand, W. M. Kruizinga, R. M. Kellogg, Tetrahedron Lett.
1978, 19, 1255−1258; b) J. Zhang, M.-Z. Jin, W. Zhang, L. Yang, Z.-L.
Liu, Tetrahedron Lett. 2002, 43, 9687−9689; c) M. O. Konev, L. Cardinale,
A. Jacobi von Wangelin Org. Lett. 2020, 22, 1316−1320.
[22] a) J. Zhang, Y. Li, R. Xu, Y. Chen, Angew. Chem. Int. Ed. 2017, 56,
12619−12623; b) L. Buzzetti, A. Prieto, S. R. Roy, P. Melchiorre, Angew.
Chem. Int. Ed. 2017, 56, 15039−15043; c) T. van Leeuwen, L. Buzzetti,
L. A. Perego, P. Melchiorre, Angew. Chem. Int. Ed. 2019, 58,
4953−4957; d) C. Zheng, G.-Z. Wang, R. Shang, Adv. Synth. Catal. 2019,
361, 4500−4505; e) J. Wu, P. S. Grant, X. Li, A. Noble, V. K. Aggarwal,
Angew. Chem. Int. Ed. 2019, 58, 5697–5701.
[5]
[6]
a) B. Giese, J. A. Gonzalez-Gomez, T. Witzel, Angew. Chem. Int. Ed.
1984, 23, 69–70; b) C. Chatgilialoglu, D. Crich, M. Komatsu, I. Ryu,
Chem. Rev. 1999, 99, 1991−2069; c) G. Bryon Gill, G. Pattenden, S. J.
Reynolds, J. Chem. Soc., Perkin Trans. 1 1994, 369−378.
a) C. Raviola, S. Protti, D. Ravelli, M. Fagnoni, Green Chem. 2019, 21,
748−764. For recent selected examples of photoredox-mediated Giese
reactions, see:: b) A. Millet, Q. Lefevre, M. Rueping, Chem. Eur. J. 2016,
22, 13464–13468; c) N. P. Ramirez, J. C. Gonzalez-Gomez, Eur. J. Org.
Chem. 2017, 2154–2163; d) A. El Marrouni, C. B. Ritts, J. Balsells, Chem.
Sci. 2018, 9, 6639–6646; e) B. Abadie, D. Jardel, G. Pozzi, P. Toullec,
J.-M. Vincent, Chem. Eur. J. 2019, 25, 16120–16127.
[23] a) R. S. Mulliken, J. Phys. Chem. 1952, 56, 801−822; b) R. Foster, J.
Phys. Chem. 1980, 84, 2135−2141.
[24] D. Rehm, A. Weller, Isr. J. Chem. 1970, 8, 259–271.
[25] a) Redox potentials of alkylidene malononitriles: L. Capaldo, D. Merli, M.
Fagnoni, D. Ravelli, ACS Catal. 2019, 9, 3054–3058. Redox potentials
of styrenes: b) F. Corvaisier, Y. Schuurman, A. Fecant, C. Thomazeau,
P. Raybaud, H. Toulhoat, D. Farrusseng, J. Catal. 2013, 307, 352–361;
c) A. Dahlén, Å. Nilsson, G. Hilmersson, J. Org. Chem. 2006, 71, 1576–
1580.
[7]
[8]
a) F. Coppa, F. Fontana, E. Lazzarini, F. Minisci, Heterocycles 1993, 36,
2687; b) M. Jouffroy, J. Kong, Chem. Eur. J. 2019, 25, 2217–2221; c) A.
H. Jatoi, G. G. Pawar, F. Robert, Y. Landais, Chem. Commun. 2019, 55,
466−469.
D. Elad, J. Rokach, J. Org. Chem. 1964, 29, 1855−1859.
This article is protected by copyright. All rights reserved.