A R T I C L E S
Malkov et al.
Scheme 1. Allylation of Aldehydes 1 with Allyl and Crotyl
Trichlorosilanes 2–4a
Chart 1. Selected Lewis Basic Catalysts for Allylation of Aldehydes
with 2a
investigation into the mechanism of allylation catalyzed by chiral
phosphoramides, Denmark has found that the reaction follows
a first order kinetics in both silane and aldehyde and a second
order in the monodentate phosphoramide promoter (10).16a,22,23
Hence, not surprisingly, bidentate Lewis bases, such as bispho-
sphoramides (11)16a,22 and bipyridine N,N′-dioxides (12),18,19
proved to be superior in reactivity and selectivity compared to
monodentate catalysts.7
In parallel, we have introduced a family of chiral pyridine
N-monooxides, such as 9 (QUINOX) and 13 (METHOX), acting
as remarkably efficient monodentate catalysts in the allylation
reaction (Scheme 1) with up to 98% ee.24,25 In a preliminary
communication,25 we have demonstrated that, despite the
structural similarity across the whole series, QUINOX (9)
displayed an unusual reactivity pattern, for which a mechanistic
rationale is presented herein.
a For a-m, see Table 1.
their Si and Sn counterparts and do not require an activator.13
Similarly, the chelates, generated from allyltrichlorosilane and
a stoichiometric amount of an amino alcohol, such as pseu-
doephedrine, do not require further activation and have been
shown to produce the corresponding homoallylic alcohols 6 with
high enantioselectivity.14
Asymmetric allylation of aldehydes 1 with allyl- and crotyl-
trichlorosilanes 2-4, catalyzed by chiral Lewis bases (Scheme
1), in particular phosphoramides 10 and 11,15–17 bipyridine N,N-
bisoxides (e.g., 12),18–20 and terpyridine N,N,N-trisoxides21
(Chart 1) has evolved into an efficient method for the synthesis
of enantiomerically enriched homoallylic alcohols 6-8 (Scheme
1).1,7 In general, the reaction displays an excellent diastereo-
control in the case of trans- and cis-crotylsilanes (3/4), sug-
gesting the cyclic transition state (TS) 5. In a detailed
Results and Discussion
In the past few years, we have developed a series of chiral
pyridine N-oxide organocatalysts for the enantioselective ally-
lation of aromatic aldehydes 1 with allyltrichlorosilanes 2–4
(10) (a) Iseki, K.; Mizuno, S.; Kuroki, Y.; Kobayashi, Y. Tetrahedron Lett.
1998, 39, 2767. (b) Iseki, K.; Mizuno, S.; Kuroki, Y.; Kobayashi, Y.
Tetrahedron 1999, 55, 977. (c) For analogous activation of Cl3SiH
by chiral tertiary amides derived from amino acids, see: Iwasaki, F.;
Omonura, O.; Mishima, K.; Kanematsu, T.; Maki, T.; Matsumura, Y.
Tetrahedron Lett. 2001, 42, 2525. (d) Malkov, A. V.; Mariani, A.;
MacDougall, K. N.; Kocˇovský, P. Org. Lett. 2004, 6, 2253.
(11) (a) Kobayashi, S.; Nishio, K. Chem. Lett. 1994, 1773. (b) Kobayashi,
S.; Nishio, K. J. Org. Chem. 1994, 59, 6620. (c) Kobayashi, S.; Nishio,
K. J. Org. Chem. 1994, 59, 6620.
(20) (a) For reviews, see : Chelucci, G.; Thummel, R. P. Chem. ReV. 2002,
102, 3129. (b) Malkov, A. V.; Kocˇovský, P. Curr. Org. Chem. 2003,
7, 1737. (c) Chelucci, G.; Murineddu, G.; Pinna, G. A. Tetrahedron:
Asymmetry 2004, 15, 1373. (d) Kwong, H. L.; Yeung, H. L.; Yeung,
C. T.; Lee, W. S.; Lee, C. S.; Wong, W. L. Coord. Chem. ReV. 2007,
251, 2188. (e) For the most recent example of bipyridine N,N-bisoxide
catalyst, see : Chelucci, G.; Belmonte, N.; Benaglia, M.; Pignataro,
L. Tetrahedron Lett. 2007, 48, 4037.
(21) Wong, W.-L.; Lee, C.-S.; Leung, H.-K.; Kwong, H.-L. Org. Biomol.
Chem 2004, 2, 1967.
(12) Chataigner, I.; Piarulli, U.; Gennari, C. Tetrahedron Lett. 1999, 40,
3633.
(22) (a) Denmark, S. E.; Fu, J.; Coe, D. M.; Su, X.; Pratt, N. E.; Griedel,
B. D. J. Org. Chem. 2006, 71, 1513. (b) For mechanistic studies on
the related aldol reaction, see: Denmark, S. E.; Bui, T. Proc. Natl.
Acad. Sci. U.S.A. 2004, 101, 5439. (c) Denmark, S. E.; Bui, T. J.
Org. Chem. 2005, 70, 10393. (d) Denmark, S. E.; Pham, S. M.;
Stavenger, R. A.; Su, X.; Wong, K.-T.; Nishigaichi, Y. J. Org. Chem.
2006, 71, 3904. (e) For mechanistic studies on Lewis-base catalyzed
opening of epoxides with chlorosilanes, see: Denmark, S. E.; Barsanti,
P. A.; Beutner, G. L.; Wilson, T. W. AdV. Synth. Catal. 2007, 349,
567.
(13) (a) Smith, K. In Organometallics in Synthesis; Schlosser, M., Ed.; J.
Wiley and Sons; Chichester, U.K., 2002; p 514. (b) Chemler, S. R.;
Roush, W. R. In Modern Carbonyl Chemistry; Otera, J., Ed.; Wiley-
VCH: Weinheim, 2000; Chapter 11.
(14) (a) Wang, X.; Meng, Q.; Nation, A. J.; Leighton, J. L. J. Am. Chem.
Soc. 2002, 124, 10672. (b) Kinnaird, J. W. A.; Ng, P. Y.; Kubota, K.;
Wang, X.; Leighton, J. L. J. Am. Chem. Soc. 2002, 124, 7920. (c)
Kubota, K.; Leighton, J. L. Angew. Chem., Int. Ed. 2003, 42, 946.
(15) (a) Iseki, K.; Kuroki, Y.; Takahashi, M.; Kishimoto, S.; Kobayashi,
Y. Tetrahedron 1997, 53, 3513. (b) Wadamoto, M.; Ozasa, N.;
Yanagisawa, A.; Yamamoto, H. J. Org. Chem. 2003, 63, 5593. (c)
Iseki, K.; Kuroki, Y.; Takahashi, M.; Kobayashi, Y. Tetrahedron Lett.
1996, 37, 5149.
(23) In the allylation, unlike in the related aldol reaction (ref 22d), the
minor, one catalyst manifold could not be characterized (ref 22a).
(24) (a) Malkov, A. V.; Orsini, M.; Pernazza, D.; Muir, K. W.; Langer,
V.; Meghani, P.; Kocˇovský, P. Org. Lett. 2002, 4, 1047. (b) Malkov,
A. V.; Bell, M.; Orsini, M.; Pernazza, D.; Massa, A.; Herrmann, P.;
Meghani, P.; Kocˇovský, P. J. Org. Chem. 2003, 68, 9659. (c) Malkov,
A. V.; Bell, M.; Vassieu, M.; Bugatti, V.; Kocˇovský, P. J. Mol. Catal.
A 2003, 196, 179. (d) Malkov, A. V.; Bell, M.; Castelluzzo, F.;
Kocˇovský, P. Org. Lett. 2005, 7, 3219. (e) For other N-monooxide
catalysts, see: Traverse, J. F.; Zhao, Y.; Hoveyda, A. H.; Snapper,
M. L. Org. Lett. 2005, 7, 3151. (f) Chai, Q.; Song, C.; Sun, Z.; Ma,
Y.; Ma, C.; Dai, Y.; Andrus, M. B. Tetrahedron Lett. 2006, 47, 8611.
(g) Pignataro, L.; Benaglia, M.; Annunziata, R.; Cinquini, M.; Cozzi,
F. J. Org. Chem. 2006, 71, 1458.
(16) (a) Denmark, S. E.; Fu, J. J. Am. Chem. Soc. 2000, 122, 12021. (b)
Denmark, S. E.; Fu, J. J. Am. Chem. Soc. 2001, 123, 9488.
(17) Hellwig, J.; Belser, T.; Müller, J. F. K. Tetrahedron Lett. 2001, 42,
5417.
(18) (a) Nakajima, M.; Saito, M.; Shiro, M.; Hashimoto, S. J. Am. Chem.
Soc. 1998, 120, 6419. (b) Nakajima, M.; Saito, M.; Hashimoto, S.
Chem. Pharm. Bull. 2000, 48, 306.
(19) (a) Shimada, T.; Kina, A.; Ikeda, S.; Hayashi, T. Org. Lett. 2002, 4,
2799. (b) Shimada, T.; Kina, A.; Hayashi, T. J. Org. Chem. 2003, 68,
6329. (c) Kina, A.; Shimada, T.; Hayashi, T. AdV. Synth. Catal. 2004,
346, 1169.
(25) Malkov, A. V.; Dufková, L.; Farrugia, L.; Kocˇovský, P. Angew. Chem.,
Int. Ed. 2003, 42, 3674.
9
5342 J. AM. CHEM. SOC. VOL. 130, NO. 15, 2008