5042
A. van den Hoogenband et al. / Tetrahedron Letters 50 (2009) 5040–5043
a)
+
+
Cl
N
Cl
Cl
N
Cl
Cl
N
Cl
Cl
N
Cl
7,8-dihydro isomer
5,6-dihydro isomer
2
1
Scheme 3. Reagents and conditions: (a) 1 mol equiv 2, 5 mol % Grubbs’ 2nd generation catalyst, 20 mol % 1,4-benzoquinone, dichloromethane, 25 °C, 75%: compound 1 is
formed as the sole product. In the absence of 1,4-benzoquinone all three isomers are formed (ratio = 2:3:4). See the detailed description in the text.
70–77; (f) Brown, D. H.; Bourassa, D. E.; Brandt, T.; Castaldi, M. J.; Frost, H. N.;
Hawkins, J.; Johnson, P. J.; Massett, S. S.; Neumann, K.; Phillips, J.; Raggon, J. W.;
Rose, P. R.; Rutherford, J. L.; Sitter, B.; Stewart, A. M.; Vetelino, M. G.; Wei, L. Org.
a)
Process Res. Dev. 2005, 9, 440–450; (g) De Vries, J. G. Can. J. Chem. 2001, 79,
B(OH)2
+
1086–1092.
N
Cl
N
Cl
6. (a) van den Hoogenband, A.; Lange, J. H. M.; Terpstra, J. W.; Koch, M.; Visser, G.
M.; Visser, M.; Korstanje, T. J.; Jastrzebski, J. T. B. H. Tetrahedron Lett. 2008, 49,
4122–4124; (b) Van den Hoogenband, A.; Lange, J. H. M.; Den Hartog, J. A. J.;
Henzen, R.; Terpstra, J. W. Tetrahedron Lett. 2007, 48, 4461–4465; (c) Van den
Hoogenband, A.; Lange, J. H. M.; Iwema-Bakker, W. I.; Den Hartog, J. A. J.; Van
Schaik, J.; Feenstra, R. W.; Terpstra, J. W. Tetrahedron Lett. 2006, 47, 4361–4364;
(d) Kuil, M.; Bekedam, E. K.; Visser, G. M.; Van den Hoogenband, A.; Terpstra, J.
W.; Kamer, P. C. J.; Van Leeuwen, P. W. N. M.; Strijdonck, G. P. F. Tetrahedron
Lett. 2005, 46, 2405–2409; (e) Berkheij, M.; Van der Sluis, L.; Sewing, C.; Den
Boer, D. J.; Terpstra, J. W.; Hiemstra, H.; Iwema-Bakker, W. I.; Van den
Hoogenband, A.; Van Maarseveen, J. H. Tetrahedron Lett. 2005, 46, 2369–2371;
Van den (f) Hoogenband, A.; Den Hartog, J. A. J.; Lange, J. H. M.; Terpstra, J. W.
Tetrahedron Lett. 2004, 45, 8535–8537; (g) Van Berkel, S. S.; Van den
Hoogenband, A.; Terpstra, J. W.; Tromp, M.; Van Leeuwen, P. W. N. M.;
Strijdonck, G. P. F. Tetrahedron Lett. 2004, 45, 7659–7662; (h) Lange, J. H. M.;
Hofmeyer, L. J. F.; Hout, F. A. S.; Osnabrug, S. J. M.; Verveer, P. C.; Kruse, C. G.;
Feenstra, R. W. Tetrahedron Lett. 2002, 43, 1101–1104.
7
1
Scheme 4. Reagents and conditions: (a) 1 mol equiv 1, 3 mol equiv PhB(OH)2,
9 mol equiv K3PO4ÁH2O, 3 mol % Pd(OAc)2, 6 mol % S-Phos, toluene, 90 °C, 30 min,
85%.
diallylpyridine 2 into 1 under mild conditions. The two novel inter-
mediates 2 and 5 which are disclosed herein may serve as versatile
synthetic building blocks. Both chlorine atoms in 1 are able to un-
dergo a Suzuki arylation reaction. Additional functionalisation
reactions of 1 are in progress. As a note of interest, besides the
key compounds 1, 2 and 5, compounds 3, 4, 6 and 7 are, to the best
of our knowledge, not described in the literature.
7. (a) Kienle, M.; Dubbaka, S. R.; Del Amo, V.; Knochel, P. Synthesis 2007, 1272–
1278; (b) Krasovskiy, A.; Krasovskaya, V.; Knochel, P. Angew. Chem., Int. Ed.
2006, 45, 2958–2961.
8. (a) Krasovskiy, A.; Knochel, P. Angew. Chem., Int. Ed. 2004, 43, 3333–3336; (b)
Selected analytical data for compound 3:1H NMR (400 MHz, CDCl3): d 3.37 (d,
J = 6 Hz, 2H), 5.14–5.25 (m, 2H), 5.82–5.93 (m, 1H), 7.10 (s, 2H).
Acknowledgements
9. van den Hoogenband, A., unpublished results.
10. Selected analytical data for compound 4: 1H NMR (400 MHz, CDCl3): d 2.40–2.54
(m, 2H), 3.31–3.38 (m, 1H), 5.10–5.21 (m, 4H), 5.60–5.71 (m, 1H), 5.81–5.92
(m, 1H), 7.10 (s, 2H).
We thank Hugo Morren and Arnold den Hartog for the analyti-
cal support, Marjolein Bosch and Jan Peter de Moes for literature
searching support and Hicham Zilaout for helpful suggestions.
11. Typical procedure for the preparation of compound 5: An oven-dried 250-ml,
three-necked reaction vessel was charged with anhydrous THF (50 ml) and
2,2,6,6-tetramethylpiperidine (1.7 g, 12 mmol) under a nitrogen atmosphere.
The resulting magnetically stirred solution was cooled to À78 °C followed by
dropwise addition of n-BuLi (4.8 ml, 2.5 M in n-hexane, 12 mmol). The
temperature was allowed to rise to 0 °C and the reaction mixture was stirred
References and notes
1. For selected literature references describing lithiation, see: (a) Slocum, D. W.;
Shelton, P.; Moran, K. M. Synthesis 2005, 3477–3498; (b) Whisler, M. C.;
MacNeil, S.; Snieckus, V.; Beak, P. Angew. Chem., Int. Ed. 2004, 43, 2206–2225;
(c) Beak, P.; Basu, B.; Gallagher, D. J.; Park, Y. S.; Thayumanavan, S. Acc. Chem.
Res. 1996, 29, 552–560; (d) Beak, P.; Lee, W. K. J. Org. Chem. 1993, 58, 1109–
1117; (e) Snieckus, V. Chem. Rev. 1990, 90, 879–933.
2. For selected reviews, see: (a) Ila, H.; Baron, O.; Wagner, A. J.; Knochel, P. Chem.
Commun. 2006, 583–593; (b) Knochel, P.; Dohle, W.; Gommermann, N.;
Kneisel, F. F.; Kopp, F.; Korn, T.; Sapountzis, I.; Vu, V. A. Angew. Chem., Int. Ed.
2003, 42, 4302–4320.
for 30 min. After cooling again to À78 °C,
a solution of 2,6-dichloro-4-
iodopyridine (2.74 g, 10 mmol) in anhydrous THF (15 ml) was added dropwise
and the reaction mixture was stirred for 1.5 h at À78 °C, followed by dropwise
addition of iodine (3.05 g, 10 mmol) in anhydrous THF (15 ml). The resulting
mixture was reacted for 1 h at À78 °C. Subsequently, the reaction was
quenched with a saturated aqueous solution of NH4Cl and diethyl ether was
added. The organic layer was successively separated, extracted with aqueous
NaHSO3, dried over Na2SO4, filtered and concentrated in vacuo. The obtained
crude
5 was dissolved in a minimum of CH2Cl2 and purified by flash
chromatography [silica gel 60 (0.040–0.063 mm, Merck)] with CH2Cl2–
petroleum ether, 1:1 (v/v), to give 2.8 g of pure 5 (70%). 1H NMR (400 MHz,
CDCl3): d 7.76 (s, 1H). 13C NMR (100 MHz, CDCl3): d 108.30, 123.67, 132.72,
150.04, 153.60. HRMS (ES+): calcd for C5H2NCl2I2 (M+H)+ 399.7654; found:
399.7658.
3. (a) De Meijere, A.; Diederich, F. Metal-Catalyzed Cross-Coupling Reactions;
Wiley-VCH: New York, 2004; (b) Jang, L.; Buchwald, S. L. Palladium-catalyzed
Aromatic Carbon–Nitrogen Bond formation in Metal-Catalyzed Cross-Coupling
Reactions, 2nd ed.; Wiley-VCH: Weinheim, 2004; (c) Hartwig, J. F. Palladium-
Catalyzed Amination of Aryl Halides and Related Reactions; John Wiley & Sons:
New York, 2002.
12. Kotha, S.; Shah, V. R.; Mandal, K. Adv. Synth. Catal. 2007, 349, 1159–1172.
13. (a) Markey, M. D.; Kelly, T. R. J. Org. Chem. 2008, 73, 7441–7443; (b) Chang, C.;
Liu, H.; Chow, T. J. J. Org. Chem. 2006, 71, 6302–6304.
4. For selected reviews, see: (a) Donohoe, T. J.; Fishlock, L. P.; Procopiou, P. A.
Chem. Eur. J. 2008, 14, 5716–5726; (b) Boeda, F.; Clavier, H.; Nolan, S. P. Chem.
Commun. 2008, 2726–2740; (c) Chattopadhyay, S. K.; Karmaker, S.; Biswas, T.;
Majumdar, K. C.; Rahaman, H.; Roy, B. Tetrahedron 2007, 63, 3919–3952; (d)
Donohoe, T. J.; Orr, A. J.; Bingham, M. Angew. Chem., Int. Ed. 2006, 45, 2664–
2670; (e) Grubbs, R. H. Angew. Chem., Int. Ed. 2006, 45, 3760–3765; (f) Grubbs,
R. H. Tetrahedron 2004, 60, 7117–7140; (g) Felpin, F. X.; Lebreton, J. Eur. J. Org.
Chem. 2003, 3693–3712; (h) Arjona, O.; Csaky, A. G.; Plumet, J. Eur. J. Org. Chem.
2003, 611–622; (i) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413–4450.
5. (a) Flahive, E. J.; Ewanicki, B. L.; Sach, N. W.; O’Neill-Slawecki, S. A.; Stankovic,
N. S.; Yu, S.; Guinness, S. M.; Dunn, J. Org. Process Res. Dev. 2008, 12, 637–645;
(b) Zegar, S.; Tokar, C.; Enache, L. A.; Rajagopol, V.; Zeller, W.; O’Connell, M.;
Singh, J.; Muellner, F. W.; Zembower, D. E. Org. Process Res. Dev. 2007, 11, 747–
753; (c) Itoh, T.; Kato, S.; Nonoyama, N.; Wada, T.; Maeda, K.; Mase, T.; Zhao, M.
M.; Song, J. Z.; Tschaen, D. M.; McNamara, J. M. Org. Process Res. Dev. 2006, 10,
822–828; (d) Kerdesky, F. A. J.; Leanna, M. R.; Zhang, J.; Li, W.; Lallaman, J. E.; Ji,
J.; Morton, H. E. Org. Process Res. Dev. 2006, 10, 512–517; (e) Denni-Dischert, D.;
Marterer, W.; Yusuff, N.; Batt, D.; Ramsey, T.; Geng, P.; Michael, W.; Wang, R.
B.; Taplin, F.; Versace, R.; Cesarz, D.; Perez, L. B. Org. Process Res. Dev. 2006, 10,
14. Selected analytical data for compound 6: 1H NMR (400 MHz, CDCl3): d 3.45 (d,
J = 6 Hz, 2H), 5.09–5.16 (m, 1H), 5.19–5.25 (m, 1H), 5.78–5.86 (m, 1H), 7.01 (s,
1H).
15. Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 1999, 38, 2411–2413.
16. Typical procedure for the preparation of compound 2: An oven-dried 250-ml
three-necked reaction vessel was charged with degassed dioxane (100 ml),
followed by addition of
5 (2 g, 5 mmol), tributylallylstannane (3.48 g,
10.5 mmol), CsF (3.19 g, 21 mmol) and Pd(PPh3)4 (0.46 g, 0.4 mmol). The
mixture was magnetically stirred under a nitrogen atmosphere in a pre-heated
oil bath at 110 °C. After 3 h, compound 5 was fully converted into compound 2
(LC–MS monitoring). After cooling to room temperature, the reaction mixture
was diluted with diethyl ether, filtered and concentrated in vacuo. The
obtained crude 2 was further purified by flash chromatography [silica gel 60
(0.040–0.063 mm, Merck)] with CH2Cl2–petroleum ether, 1:3 (v/v), to give
0.78 g of 2 (70%). 1H NMR (400 MHz, CDCl3): d 3.40 (br d, J = 6 Hz, 2H), 3.53 (br
d, J = 6 Hz, 2H), 4.93 (br d, J = 18 Hz, 1H), 5.06–5.12 (m, 2H), 5.21 (dd, J = 11 Hz
and 2 Hz, 1H), 5.81–5.94 (m, 2H), 7.11 (s, 1H). 13C NMR (100 MHz, CDCl3): d