Organic Letters
Letter
(30) Fraser-Reid, B.; Grimme, S.; Piacenza, M.; Mach, M.; Schlueter,
ACKNOWLEDGMENTS
■
U. Chem. - Eur. J. 2003, 9, 4687.
(31) Cainelli, G.; Giacomini, D.; Trere, A.; Galletti, P. Tetrahedron:
Asymmetry 1995, 6, 1593.
This research was supported by the National Institutes of
Health (NIH), National Institute of General Medical Sciences
(1R01GM129286). The authors acknowledge New York
University’s Shared Instrumentation Facility and the support
provided by National Science Foundation Grant CHE-
01162222 and NIH Grant S10-OD016343. The authors
thank Dr. Chin Lin (New York University) and Dr. Chunhua
(Tony) Hu (New York University) for their help with NMR
and X-ray data, respectively.
́
(32) Paulsen, H.; Schuttpelz, E. Chem. Ber. 1979, 112, 3214.
(33) Sammakia, T.; Smith, R. S. J. Am. Chem. Soc. 1994, 116, 7915.
(34) Computational studies conducted using density functional
methods (B3LYP/6-31G*) determined that the trans dioxolenium
ion is energetically preferred over the cis conformer by 1.86 kcal/mol.
(35) Hansen, T.; Elferink, H.; van Hengst, J. M. A.; Houthuijs, K.;
Remmerswaal, W. A.; Kromm, A.; Berden, G.; van der Vorm, S.; Rijs,
A.; Overkleeft, H. S.; Filippov, D.; Rutjes, F. P. J. T.; van der Marel,
̈
́
G.; Martens, J.; Oomens, J.; Codee, J. D. C.; Boltje, T. Character-
(36) Crich, D.; Hu, T.; Cai, F. J. Org. Chem. 2008, 73, 8942.
(37) Saliba, R. C.; Wooke, Z. J.; Nieves, G. A.; Chu, A.-H. A.;
Bennett, C. S.; Pohl, N. L. B. Org. Lett. 2018, 20, 800.
(38) Reactions performed in tetrahydrofuran or diethyl ether
afforded little conversion, likely because these solvents compete for
the Lewis acid.
(39) Crich, D.; Patel, M. Carbohydr. Res. 2006, 341, 1467.
(40) Schmidt, R. R.; Michel, J. Tetrahedron Lett. 1984, 25, 821.
(41) Schmidt, R. R.; Reichrath, M.; Moering, U. J. Carbohydr. Chem.
1984, 3, 67.
(42) Chao, C.-S.; Lin, C.-Y.; Mulani, S.; Hung, W.-C.; Mong, K.-k.
T. Chem. - Eur. J. 2011, 17, 12193.
(43) Mayr, H.; Patz, M. Angew. Chem., Int. Ed. Engl. 1994, 33, 938.
(44) Singleton, D. A.; Wang, Y.; Yang, H. W.; Romo, D. Angew.
Chem., Int. Ed. 2002, 41, 1572.
REFERENCES
■
(1) Williams, R. J.; McGill, N. W.; White, J. M.; Williams, S. J. J.
Carbohydr. Chem. 2010, 29, 236.
́
(2) Berces, A.; Enright, G.; Nukada, T.; Whitfield, D. M. J. Am.
Chem. Soc. 2001, 123, 5460.
(3) Nukada, T.; Berces, A.; Zgierski, M. Z.; Whitfield, D. M. J. Am.
Chem. Soc. 1998, 120, 13291.
́
́
(4) Hernan-Gomez, A.; Orr, S. A.; Uzelac, M.; Kennedy, A. R.;
Barroso, S.; Jusseau, X.; Lemaire, S.; Farina, V.; Hevia, E. Angew.
Chem., Int. Ed. 2018, 57, 10630.
(5) Farrell, M. P.; Doyle, L. M.; Murphy, P. V. Tetrahedron Lett.
2018, 59, 2726.
(6) Nigudkar, S. S.; Demchenko, A. V. Chem. Sci. 2015, 6, 2687.
(7) Kudo, K.; Hashimoto, Y.; Sukegawa, M.; Hasegawa, M.; Saigo,
K. J. Org. Chem. 1993, 58, 579.
́
(8) Prevost, M.; Dostie, S.; Waltz, M.-E.; Guindon, Y. J. Org. Chem.
(45) Garcia, A.; Sanzone, J. R.; Woerpel, K. A. Angew. Chem., Int. Ed.
2015, 54, 12087.
(46) Singh, O. V.; Han, H. Org. Lett. 2007, 9, 4801.
2014, 79, 10504.
(9) Saniger, E.; Campos, J. M.; Entrena, A.; Marchal, J. A.; Boulaiz,
́
́
H.; Aranega, A.; Gallo, M. A.; Espinosa, A. Tetrahedron 2003, 59,
8017.
(10) Fujioka, H.; Matsumoto, N.; Ohta, R.; Yamakawa, M.; Shimizu,
N.; Kimura, T.; Murai, K. Tetrahedron Lett. 2015, 56, 2656.
(11) Mori, I.; Bartlett, P. A.; Heathcock, C. H. J. Org. Chem. 1990,
55, 5966.
́
(12) Chapdelaine, D.; Cardinal-David, B.; Prevost, M.; Gagnon, M.;
Thumin, I.; Guindon, Y. J. Am. Chem. Soc. 2009, 131, 17242.
(13) Graham, M. A.; Wadsworth, A. H.; Zahid, A.; Rayner, C. M.
Org. Biomol. Chem. 2003, 1, 834.
(14) Guindon, Y.; Gagnon, M.; Thumin, I.; Chapdelaine, D.; Jung,
́
G.; Guerin, B. Org. Lett. 2002, 4, 241.
́
(15) Gomez, J. A.; Trujillo, M. A.; Campos, J.; Gallo, M. A.;
Espinosa, A. Tetrahedron 1998, 54, 13295.
(16) Kunz, T.; Janowitz, A.; Reißig, H.-U. Chem. Ber. 1989, 122,
2165.
(17) Molander, G. A.; Haar, J. P. J. Am. Chem. Soc. 1993, 115, 40.
(18) Hashimoto, Y.; Sato, Y.; Kudo, K.; Saigo, K. Tetrahedron Lett.
1993, 34, 7623.
(19) Evans, D. A.; Dart, M. J.; Duffy, J. L.; Yang, M. G. J. Am. Chem.
Soc. 1996, 118, 4322.
(20) Evans, D. A.; Cee, V. J.; Siska, S. J. J. Am. Chem. Soc. 2006, 128,
9433.
(21) Evans, D. A.; Siska, S. J.; Cee, V. J. Angew. Chem., Int. Ed. 2003,
42, 1761.
(22) Hosokawa, S. Acc. Chem. Res. 2018, 51, 1301.
(23) Rosenberg, R. E.; Kelly, W. J. J. Phys. Org. Chem. 2015, 28, 47.
(24) Borg, T.; Danielsson, J.; Mohiti, M.; Restorp, P.; Somfai, P.
Adv. Synth. Catal. 2011, 353, 2022.
(25) Ethyl acetals were used because higher diastereomeric ratios
and fewer side reactions were observed in substitution reactions of
these compounds.
(26) Heuckendorff, M.; Pedersen, C. M.; Bols, M. Org. Lett. 2011,
13, 5956.
(27) Brown, H. C.; Ichikawa, K. J. Am. Chem. Soc. 1962, 84, 373.
(28) Kreevoy, M. M.; Taft, R. W. J. Am. Chem. Soc. 1955, 77, 5590.
(29) Chan, W. C.; Koide, K. Org. Lett. 2018, 20, 7798.
E
Org. Lett. XXXX, XXX, XXX−XXX