Sialylꢀ3´ꢀlactose neoglycoconjugates
Russ.Chem.Bull., Int.Ed., Vol. 55, No. 11, November, 2006 2099
(C(1)ꢀGlc, 7α); 76.3 (C(4)ꢀGlc, 7α); 76.2 (C(4)ꢀGlc, 7β); 73.6
(C(2)ꢀGlc, 7β); 73.0 (C(5)ꢀGlc, 7β); 72.5 (C(3)ꢀGlc, 7β); 72.0
(C(6)ꢀNeu, 7α,β); 71.4 (C(2)ꢀGlc, 7α, C(3)ꢀGal, 7α,β); 70.4
(C(5)ꢀGal, 7α,β); 70.1 (C(3)ꢀGlc, 7α); 69.9 (C(2)ꢀGal, 7α,β);
69.3 (C(4)ꢀNeu, 7α,β); 68.2 (C(5)ꢀGlc, 7α); 67.8 (C(7)ꢀNeu,
7α,β); 67.3 (C(4)ꢀGal, 7α,β); 66.8 (C(8)ꢀNeu, 7α,β); 62.2
(C(6)ꢀGal, 7α,β); 62.1 (C(6)ꢀGlc, 7α,β); 61.5 (C(9)ꢀNeu,
7α,β); 53.1 (COOCH3, 7α,β); 49.2 (C(5)ꢀNeu, 7α,β); 37.4
(C(3)ꢀNeu, 7α,β); 23.1—20.5 (CH3CO). Found (%): C, 49.25;
H, 5.79; N, 1.27. C44H61NO29. Calculated (%): C, 49.49;
H, 5.79; N, 1.31.
[Methyl (5ꢀacetamidoꢀ4,7,8,9ꢀtetraꢀOꢀacetylꢀ3,5ꢀdideoxyꢀ
DꢀglyceroꢀαꢀDꢀgalactoꢀ2ꢀnonulopyranosyl)onate]ꢀ(2→3)ꢀ2,4,6ꢀ
triꢀOꢀacetylꢀβꢀDꢀgalactopyranosylꢀ(1→4)ꢀ2,3,6ꢀtriꢀOꢀacetylꢀ
α,βꢀDꢀglucopyranosyl trichloroacetimidate (8α,β). Trichloroꢀ
acetonitrile (0.53 mL, 5.3 mmol) was added to a solution of
hemiacetal 7α,β (0.565 g, 0.529 mmol) in anhydrous CH2Cl2
(10 mL), the mixture was cooled to –30 °C, DBU (0.08 mL)
was added, and the mixture was stirred for 1 h at –30 °C. The
mixture was applied onto a column with silica gel (50 g) preꢀ
washed with toluene containing 0.1% of triethylamine. Elution
with a toluene—acetone mixture (7 : 3, +0.1% of triethylamine)
gave 0.492 g (77%) of anomeric mixture 8α,β in a 2 : 1 ratio as a
white foam, Rf 0.35 (acetone—toluene, 2 : 3). 1H NMR (CDCl3),
δ: 6.50 (d, H(1)ꢀGlc, 8α, J1,2 = 3.3 Hz); 5.95 (d, H(1)ꢀGlc, 8β,
J1,2 = 8.2 Hz); 5.55 (dd, H(3)ꢀGlc, 8α, J3,2 = J3,4 = 9.6 Hz);
neoglycolipid 3 and study of the specificity of the immue
response using biotinylated derivative 4 and polyacrylꢀ
amide conjugate 5 will be published elsewhere.)
Experimental
Triethylamine, Nꢀhydroxysuccinimide ester of 4ꢀmaleimidoꢀ
butyric acid (Fluka), trichloroacetonitrile, TMSOTf, hydrazine
acetate (Acros), DBU (Merck), KLH, 2ꢀiminothiolane hydroꢀ
chloride, and Nꢀhydroxysuccinimide ester of biotin (Sigma) were
used as received. Dichloromethane was distilled twice from P2O5
and then from CaH2 under argon. Dimethylformamide was disꢀ
tilled in vacuo (oil pump) from phthalic anhydride and then
from CaH2. Molecular sieves (MS 4 Å) were activated by calciꢀ
nation at 180 °C in vacuo (oil pump) for 2 h. The 1H and
13C NMR spectra were recorded on Bruker DRXꢀ500 and Bruker
AMꢀ300 instruments at 25 °C. The signals were assigned by
homoꢀ and heteronuclear 2D COSY, TOCSY, and HSQC specꢀ
tra. Optical rotation was measured on a PUꢀ07 digital polariꢀ
meter (State Research and Engineering Center of Scientific Inꢀ
strument Making) at 18—25 °C. Thin layer chromatography was
carried out on silica gel Kieselgelꢀ60 plates (Merck), and comꢀ
pounds were visualized by treatment with a 10% (v/v) solution
of orthophosphoric acid in ethanol or (for amines) with a ninꢀ
hydrin solution (3 g L–1 in a butanol—acetic acid mixture, 30 : 1)
followed by heating at ~150 °C. Column chromatography was
carried out on Silica gel 60 (Merck), 0.040—0.063 mm. A Knauer
98.00 refractometer was used as the detector for gel chromatoꢀ
graphy.
[Methyl (5ꢀacetamidoꢀ4,7,8,9ꢀtetraꢀOꢀacetylꢀ3,5ꢀdideoxyꢀ
DꢀglyceroꢀαꢀDꢀgalactoꢀ2ꢀnonulopyranosyl)onate]ꢀ(2→3)ꢀ2,4,6ꢀ
triꢀOꢀacetylꢀβꢀDꢀgalactopyranosylꢀ(1→4)ꢀ2,3,6ꢀtriꢀOꢀacetylꢀ
α,βꢀDꢀglycopyranose (7α,β). A solution of acetate mixture 6α,β
(0.876 g, 0.79 mmol) and hydrazine acetate (0.109 g, 1.18 mmol)
in anhydrous DMF (10 mL) was stirred for 3 h at ~20 °C,
diluted with chloroform (50 mL), washed with water (50 mL)
and brine (20 mL), and concentrated; then DMF was coꢀevapoꢀ
rated with toluene. Column chromatography of the residue (toluꢀ
ene—methanol, 95 : 5 → 9 : 1) gave 0.786 g (89%) of anomeric
mixture 7α,β in 2 : 1 ratio as a white foam, Rf 0.18 (acꢀ
etone—toluene, 2 : 3), [α]D +18 (c 1, CHCl3). 1H NMR
(CDCl3), δ: 5.55—5.47 (m, H(8)ꢀNeu, 7α,β, H(3)ꢀGlc, 7α);
5.41 (dd, H(7)ꢀNeu, 7α,β, J7,6 = 2.7 Hz, J7,8 = 9.4 Hz); 5.37 (d,
5.50 (m, H(8)ꢀNeu, 8α,β); 5.40 (dd, H(7)ꢀNeu, 8α,β, J7,6
2.7 Hz, J7,8 = 9.4 Hz); 5.30 (dd, H(3)ꢀGlc, 8β, J3,2 = J3,4
=
=
8.9 Hz); 5.16 (d, NHꢀNeu, 8β, J5,NH = 10.0 Hz); 5.12 (d,
NHꢀNeu, 8α, J5,NH = 10.0 Hz); 5.08 (dd, H(2)ꢀGlc, 8α, J2,1
3.5 Hz, J2,3 = 10.0 Hz); 4.96 (dd, H(2)ꢀGal, 8α,β, J2,1 = J2,3
=
=
8.5 Hz); 4.90 (m, H(4)ꢀGal, 8α,β, H(4)ꢀNeu, 8α,β, H(2)ꢀGlc,
8β, H(6а)ꢀGlc, 8β); 4.68 (d, H(1)ꢀGal, 8α,β, J1,2 = 8.0 Hz);
4.52 (dd, H(3)ꢀGal, 8α,β, J2,3 = 8.5 Hz, J3,4 = 2.7 Hz);
4.46—4.39 (m, H(6a)ꢀGlc, 8α, H(9a)ꢀNeu, 8α,β); 4.23 (dd,
H(6b)ꢀGlc, 8α, J6b,6a = 12.0 Hz, J6b,5 = 4.0 Hz); 4.23 (m,
H(6b)ꢀGlc, 8β); 4.17—3.91 (m, H(4)ꢀGlc, 8α,β, H(5)ꢀGlc, 8α,
H(6а)ꢀGal, H(6b)ꢀGal, 8α,β, H(5)ꢀNeu, 8α,β, H(9b)ꢀNeu,
8α,β); 3.88—3.82 (m, H(5)ꢀGal, 8α,β, OCH3, 8α,β); 3.68 (m,
H(5)ꢀGlc, 8β); 3.64 (H(6)ꢀNeu, 8α,β); 2.58 (dd, Heq(3)ꢀNeu,
8α,β, J3eq,4 = 4.4 Hz, J3eq,3ax = 12.7 Hz); 1.82—2.30 (m,
CH3CO, 8α,β); 1.78 (dd, Hax(3)ꢀNeu, 8α,β, J3ax,3eq = J3ax,4
=
12.5 Hz). 13C NMR (CDCl3), δ: 170.0—170.8 (CH3CO,
CH3CON); 155.9 (OC(CCl3)N); 168.0 (C(1)ꢀNeu, 8α,β); 101.2
(C(1)ꢀGal, 8α,β); 96.8 (C(2)ꢀNeu, 8α,β); 96.3 (C(1)ꢀGlc, 8β);
93.2 (C(1)ꢀGlc, 8α); 75.9 (C(4)ꢀGlc, 8α,β); 72.0 (C(5)ꢀGlc,
8β, C(6)ꢀNeu, 8α,β); 71.6 (C(3)ꢀGal, 8α,β); 71.0 (C(2)ꢀGlc,
8β, C(5)ꢀGlc, 8α); 70.6 (C(5)ꢀGal, 8α,β); 70.1 (C(2)ꢀGlc, 8α);
70.0 (C(3)ꢀGlc, 8α, C(2)ꢀGal, 8α,β); 69.4 (C(4)ꢀNeu, 8α,β);
68.5 (C(3)ꢀGlc, 8β); 67.8 (C(7)ꢀNeu, 8α,β); 67.3 (C(4)ꢀGal,
8α,β); 66.8 (C(8)ꢀNeu, 8α,β); 62.2 (C(6)ꢀGal, 8α,β); 62.0
(C(9)ꢀNeu, 8α,β); 61.7 (C(6)ꢀGlc, 8α,β); 53.1 (COOCH3,
8α,β); 49.2 (C(5)ꢀNeu, 8α,β); 37.4 (C(3)ꢀNeu, 8α,β);
23.1—20.5 (CH3CO). Found (%): C, 44.69; H, 5.07; N, 2.37.
C46H61Cl3N2O29. Calculated (%): C, 45.57; H, 5.07; N, 2.31.
3ꢀТrifluoroacetamidopropyl [methyl (5ꢀacetamidoꢀ4,7,8,9ꢀ
tetraꢀOꢀacetylꢀ3,5ꢀdideoxyꢀDꢀglyceroꢀαꢀDꢀgalactoꢀ2ꢀnonuloꢀ
pyranosyl)onate]ꢀ(2→3)ꢀ2,4,6ꢀtriꢀOꢀacetylꢀβꢀDꢀgalactopyranoꢀ
sylꢀ(1→4)ꢀ2,3,6ꢀtriꢀOꢀacetylꢀβꢀDꢀglucopyranoside (10). A soluꢀ
tion of imidate 8α,β (0.482 g, 0.398 mmol) and 3ꢀtrifluoroꢀ
acetamidopropanꢀ1ꢀol 9 (0.136 g, 0.795 mmol) in anhydrous
H(1)ꢀGlc, 7α, J1,2 = 3.5 Hz); 5.22 (dd, H(3)ꢀGlc, 7β, J3,2
=
J3,4 = 9.5 Hz); 5.12 (d, NHꢀNeu, 7α,β, J5,NH = 10.0 Hz); 4.94
(dd, H(2)ꢀGal, 7α,β, J2,1 = 8.0 Hz, J2,3 = 10.0 Hz); 4.92—4.87
(m, H(4)ꢀGal, 7α,β, H(4)ꢀNeu, 7α,β); 4.86 (dd, H(2)ꢀGlc, 7α,
J2,1 = 3.5 Hz, J2,3 = 10.5 Hz); 4.80 (dd, H(2)ꢀGlc, 7β, J2,1
=
J2,3 = 9.5 Hz); 4.73 (d, H(1)ꢀGlc, 7β, J1,2 = 9.5 Hz); 4.67 (d,
H(1)ꢀGal, 7α,β, J1,2 = 8.0 Hz); 4.52 (m, H(3)ꢀGal, 7α,β); 4.47
(d, H(6a)ꢀGlc, 7β); 4.43 (m, H(6a)ꢀGlc, 7α, H(9a)ꢀNeu, 7α,β);
4.25—4.14 (m, H(5)ꢀGlc, 7α, H(6b)ꢀGlc, 7α,β); 4.08—3.97
(m, H(5)ꢀNeu, 7α,β, H(6a)ꢀGal, H(6b)ꢀGal, 7α,β, H(9b)ꢀNeu,
7α,β); 3.88—3.82 (m, H(4)ꢀGlc, 7α,β, H(5)ꢀGal, 7α,β, OCH3
7α,β); 3.66 (m, H(5)ꢀGlc, 7β); 3.64 (m, H(6)ꢀNeu, 7α,β); 2.58
(dd, Heq(3)ꢀNeu, 7α,β, J3eq,4 = 4.4 Hz, J3eq,3ax = 12.7 Hz);
1.82—2.30 (m, CH3CO, 7α,β); 1.78 (dd, Hax(3)ꢀNeu, 7α,β,
J3ax,3eq = J3ax,4 = 12.5 Hz). 13C NMR (CDCl3), δ: 170.0—170.8
(CH3CO, CH3CON); 168.0 (C(1)ꢀNeu, 7α,β); 101.0 (C(1)ꢀGal,
7α,β); 96.8 (C(2)ꢀNeu, 7α,β); 95.2 (C(1)ꢀGlc, 7β); 90.2