H. Ndangalasi, F. Mbago, R. Brun and S. B. Christensen, J. Nat.
Prod., 2004, 67, 743–748; (f) A. Graulich, F. Mercier, J. Scuvee-
Moreau, V. Seutin and J. F. Liegeois, Bioorg. Med. Chem., 2005,
13, 1201–1209; (g) Y. H. Chen, Y. H. Zhang, H. J. Zhang, D. Z.
Liu, M. Gu, J. Y. Li, F. Wu, X. Z. Zhu, J. Li and F. J. Nan, J.
Med. Chem., 2006, 49, 1613–1623; (h) A. Morrel, S. Antony, G.
Kohlhagen, Y. Pommier and M. Cushman, J. Med. Chem., 2006,
49, 7740–7753; (i) G. Bringmann, J. Mutanyatta-Comar, M. Greb,
S. Rudenauer, T. F. Noll and A. Irmer, Tetrahedron, 2007, 63,
1755–1761.
2 For the isolation, see: (a) F. Tomita, K. Takahashi and K.
Shimizu, J. Antibiot., 1983, 463–467; (b) K. Takahashi and F.
Tomita, J. Antibiot., 1983, 468–470. For the total synthesis, see: (c)
T. Fukuyama and J. J. Nunes, J. Am. Chem. Soc., 1988, 110,
5196–5198; (d) S. Kwon and A. G. Myers, J. Am. Chem. Soc.,
2005, 127, 16796–16797.
3 For the isolation, see: (a) R. Sakai, E. A. Jares-Erijman, I.
Manzanares, M. V. S. Elipe and K. L. Rinehart, J. Am. Chem.
Soc., 1996, 118, 9017–9023. For the total synthesis, see: (b) J. Chen,
X. Chen, M. Willot and J. Zhu, Angew. Chem., Int. Ed., 2006, 45,
8028–8032.
4 (a) M. A. H. de Zwart, H. van der Goot and H. Timmerman, J.
Med. Chem., 1989, 32, 487–493; (b) J. E. van Muijlwijk-Koezen, H.
Timmerman, R. Link, H. van der Goot and A. P. IJzerman, J.
Med. Chem., 1998, 41, 3987–3993; (c) J. E. van Muijlwijk-Koezen,
H. Timmerman, R. Link, H. van der Goot and A. P. IJzerman, J.
Med. Chem., 1998, 41, 3994–4000.
7 For copper-catalysed isoquinoline formation through N-tert-butyl-
2-(1-alkynyl)benzaldimine derivatives, see: (a) K. R. Roesh and R.
C. Larock, J. Org. Chem., 1998, 63, 5306–5307; (b) K. R. Roesch
and R. C. Larock, Org. Lett., 1999, 1, 553–556; (c) Q. Huang, J. A.
Hunter and R. C. Larock, Org. Lett., 2001, 3, 2973–2976; (d) K. R.
Roesh and R. C. Larock, J. Org. Chem., 2002, 67, 86–94; (e) Q.
Huang, J. A. Hunter and R. C. Larock, J. Org. Chem., 2002, 67,
3437–3444; (f) H. Zhang and R. C. Larock, Tetrahedron Lett.,
2002, 43, 1359–1362.
8 For other isoquinoline formation from related intermediates, see:
(a) P. N. Anderson and J. T. Sharp, J. Chem. Soc., Perkin Trans. 1,
1980, 1331–1334; (b) T. Sakamoto, Y. Kondo, N. Miura, K.
Hayashi and H. Yamanaka, Heterocycles, 1986, 24, 2311–2314;
(c) T. Sakamoto, A. Numata and Y. Kondo, Chem. Pharm. Bull.,
2000, 48, 669–772; (d) G. Dai and R. C. Larock, Org. Lett., 2001, 3,
4035–4038; (e) Q. Huang and R. C. Larock, Tetrahedron Lett.,
2002, 43, 3557–3560; (f) N. Asao, S. Yudha S, T. Nogami and Y.
Yamamoto, Angew. Chem., Int. Ed., 2005, 44, 5526–5528.
9 For the synthesis of isoquinolines by three-component reaction,
see: (a) N. Asao, K. Iso and S. Yudha S, Org. Lett., 2006, 8,
4149–4151; (b) M. Oikawa, Y. Takeda, S. Naito, D. Hashizume,
H. Koshino and M. Sasaki, Tetrahedron Lett., 2007, 48,
4255–4258.
10 Actually, one-portion addition of all the four components using 4j
gave a complex mixture of unidentified products without produ-
cing 6 (compare with Table 1, entry 10).
11 For isoquinoline formation with such ammonium salts as formate,
carbonate, and ammonia, see ref. 8c.
5 For recent notable reviews, see: (a) B. M. Trost, Acc. Chem. Res.,
2002, 35, 695–705; (b) K. C. Nicolaou, T. Montagnon and S. A.
Snyder, Chem. Commun., 2003, 551–564.
12 In the reaction using 4i, a hydrogen atom at the 4-position of 6a
would come from H2O generated in imine formation.
6 H. Ohno, Y. Ohta, S. Oishi and N. Fujii, Angew. Chem., Int. Ed.,
2007, 46, 2295–2298.
13 At the present stage of our understanding, the reason for this
unsatisfactory result is unclear.
ꢀc
This journal is The Royal Society of Chemistry 2008
Chem. Commun., 2008, 835–837 | 837